The quantum beam splitter revisited without a vacuum state

Authors

  • Alexander Nahmad
  • Damian P San-Roman-Alerigi
  • Edna Magdalena Hernández González Facultad de Ciencias, Universidad Nacional Autónoma de México
  • Erick Barrios Facultad de Ciencias, UNAM
  • Gustavo Armendariz Peña
  • Víctor Manuel Velazquez Aguilar Facultad de Ciencias, Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.31349/RevMexFisE.19.010210

Keywords:

Quantum beam splitter, quantum interference, entanglement

Abstract

In this article we explain in a new light two fundamental concepts ofquantum optics, the quantum beam splitter and the quantum interferometer, in termsof two state quantum wave functions. This method is consistent with the concept ofentanglement, and hence the algebra needed to describe them is reduced to additionsand products of the components of the quantum states. Furthermore, under thepremises of this method it is possible to study quantum states of greater complexity,like those arising from the addition and products of single photon states.

References

Crhistopher C. Gerry, Peter L. Night, Introductory Quantum Optics, (Cambridge U.P. 2005), pp. 135-146.

Leonard Mandel, Emil Wolf, Optical Coherence and Quantum Optics, (Cambridge U.P., 1995), pp. 573-658.

C. H. Holbrow, E. Galvez, M. E. Parks, Photon quantum mechanics and beam splitters, American Journal of Physics 70 (2002) 260, https://doi.org/10.1119/1.1432972.

P. Grangier, G. Roger, A. Aspect, Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences EPL 1 (1986) 173, https://doi.org/10.1209/0295-5075/1/4/004/pdf.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, M. Beck, Observing the quantum behavior of light

in an undergraduate laboratory Am. J. Phys. 72 (2004) 1210, https://doi.org/10.1119/1.1737397

Damian San Rom ´ an Alerigi, “La Naturaleza Cuantica de la Luz: Anticorrelacion Experimental”, Tesis de Licenciatura, Facultad de Ciencias-UNAM, 2009.

Mark Beck, Quantum Mechanics: Theory and Experiment”, Rev. Mex. Fis. E 19 010210 (Oxford University Press, 2012) pp. 463-474.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, J. Spencer, Interference with correlated photons: Five quantum mechanics experiments for undergraduates, American Journal of Physics 73 (2005) 127, https://doi.org/10.1119/1.1796811

Marlan O. Scully, M. Suhail Zubairy, Quantum Optics, (Cambridge U.P. 1997) pp. 582-623.

Richard P. Feynman, Lectures on Physics, Vol. 3, (Academic Press, 1994) pp. 2-1-2-6.

Z. Y. Yeff Ou, Multiphoton quantum interference, (Springer, 2006) pp. 63-82

Y.H. Shih, C.O. Alley, New type of Einstein-PodolskyRosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, Phys. Rev. Lett., 61 (1988) 2921, https://doi.org/10.1103/PhysRevLett.61.2921.

Z. Y. Ou, L. Mandel, Violation of Bell’s Inequality and Classical Probability in a Two-Photon Correlation Experiment, Phys. Rev. Lett. 61 (1988) 50, https://doi.org/10.1103/PhysRevLett.61.50.

C.K.Hong,Z.Y.Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59 (1987) 2044, https://doi.org/10.1103/PhysRevLett.59.2044.

A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. Experimental Tests of Realistic Local Theories via Bell’s Theorem, 47 (1981) 460 https://doi.org/10.1103/PhysRevLett.47.460

A. Aspect, P. Grangier, G. Roger, Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities,Phys. Rev. Lett. 49 (1982) 91, https://doi.org/10.1103/PhysRevLett.49.91.

A. Aspect, J. Dalibard, G. Roger, Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers Phys. Rev.

Lett. 49 (1982) 1804 https://doi.org/10.1103/PhysRevLett.49.1804.

Downloads

Published

2022-01-01

How to Cite

[1]
A. Nahmad, D. P. San-Roman-Alerigi, E. M. Hernández González, E. Barrios, G. Armendariz Peña, and V. M. Velazquez Aguilar, “The quantum beam splitter revisited without a vacuum state”, Rev. Mex. Fis. E, vol. 19, no. 1 Jan-Jun, pp. 010210 1–7, Jan. 2022.