Visualization of face-centered cubic energy band using spreadsheet and javascript as innovative learning

Authors

  • Aditya Yoga Purnama Yogyakarta State University
  • Heru Kuswanto Department of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta, 55281, Indonesia
  • Syella Ayunisa Rani Concentration of Physics Education, Department of Educational Sciences, Graduate School, Universitas Negeri Yogyakarta, Yogyakarta, 55281, Indonesia
  • Himawan Putranta Concentration of Physics Education, Department of Educational Sciences, Graduate School, Universitas Negeri Yogyakarta, Yogyakarta, 55281, Indonesia

DOI:

https://doi.org/10.31349/RevMexFisE.19.020205

Keywords:

face-centered cubic, energy band, spreadsheets, visualizations

Abstract

Constructing mathematical equations in physics often creates difficulties in students' learning process. Therefore, it is necessary to have technology-based simulations to understand physical phenomena. One technology that is easy to use for simulations in physics learning is the spreadsheet program. This study aims to use spreadsheet media to visualize the face-centered cubic (FCC) energy band using the tight-binding method and to compare the results with the JavaScript programming language. This paper succeeded in making visualization of face-centered cubic (FCC) energy band using a spreadsheet as an alternative to distance learning. The spreadsheet is easier to use because they do not use complicated programming languages like JavaScript. This paper shows the use of innovative learning media, spreadsheets, in materials courses.

References

L. Gulay, M. Daszkiewicz, O. Strok, and A. Pietraszko, “Crystal structure of Cu2Se,” Chem. Metals Alloys. 4 (2011) 200-205. https://doi.org/10.30970/cma4.0184

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95 (1995) 69-96. https://doi.org/10.1021/cr00033a004

L. N. German, M. B. Starr, and X. Wang, “Computation of electronic energy band diagrams for piezotronic semiconductor and electrochemical systems,” Adv. Elec. Mater. 4 (2018) 170-176. https://doi.org/10.1002/aelm.201700395

J. Sevcik, P. Urbanek, D. Skoda, T. Jamatia, V. Nadazdy, M. Urbanek, and I. Kuritka, “Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs,” Mater. Design. 205 (2011) 109-114. https://doi.org/10.1016/j.matdes.2021.109738

D. Fathi, “A review of the electronic band structure of graphene and carbon nanotubes using tight binding,” J. Nanotech. 2 (2011) 178-185. https://doi.org/10.1155/2011/471241

E. F. Redish and E. Kuo, “Language of physics, the language of math: Disciplinary culture and dynamic epistemology,” Sci. Edu. 24 (2015) 561-590. https://doi.org/10.1007/s11191-015-9749-7

S. Gulwani, “Automating string processing in spreadsheets using input-output examples,” ACM Sigplan Not. 46 (2011) 317-330. https://doi.org/10.1145/1925844.1926423

E. Pratidhina, W. S. B. Dwandaru, and H. Kuswanto, “Exploring Fraunhofer diffraction through Tracker and spreadsheet: An alternative lab activity for distance learning,” Rev. Mexicana Física E. 17 (2020) 285-290. https://doi.org/10.31349/RevMexFisE.17.285

W. V. Glassey, “Spreadsheet modeling of electron distributions in solids,” J. Chem. Edu. 83 (2006) 327-332. https://doi.org/10.1021/ed083p327

A. F. Stent and L. G. McAlevey, “The stochastic spreadsheet: a new teaching dimension,” J. Royal Stat. Soc.: Series D (The Stat.). 40 (1991) 409-413. https://doi.org/10.2307/2348730

K. C. Seal, Z. H. Przasnyski, and L. A. Leon, “How levels of interactivity in tutorials affect students' learning of modeling transportation problems in a spreadsheet,” Dec. Sci. J. Innov. Edu. 8 (2010) 75-94. https://doi.org/10.1111/j.1540-4609.2009.00244.x

W. T. Cheung, S. Ryu, and S. Kim, “Development nature matters: An empirical study of code clones in JavaScript applications,” Empiric. Software Eng. 21 (2016) 517-564. https://doi.org/10.1007/s10664-015-9368-6

A. Wibowo, “Accelerated mobile pages from JavaScript as accelerator tool,” Int. J. Elect. Comp. Eng. 8 (2018) 2399-2405. https://doi.org/10.11591/ijece.v8i4.pp2399-2405

B. Bienfait and P. Ertl, “JSME: a free molecule editor in JavaScript,” J. Cheminform. 5 (2013) 1-6. https://doi.org/10.1186/1758-2946-5-24

A. Onofri and E. Pannacci, “Spreadsheet tools for biometry classes in crop science programs,” Comm. Biomet. Crop Sci. 9 (2014) 146-151.

A. J. Magana and G. Silva Coutinho, “Modeling and simulation practices for a computational thinking‐enabled engineering workforce,” Comp. Appl. Eng. Edu. 25 (2017) 62-78. https://doi.org/10.1002/cae.21779

T. F. Silalahi and A. F. Hutauruk, “The application of cooperative learning model during online learning in the pandemic period,” Budapest Int. Res. Crit. Inst. J. 3 (2020) 198-204. https://doi.org/10.33258/birci.v3i3.1100

Y. Yustina, W. Syafii, and R. Vebrianto, R. “The effects of blended learning and project-based learning on pre-service biology teachers' creative thinking through online learning in the COVID-19 pandemic,” Indonesian Sci. Edu. J. 9 (2020) 408-420. https://doi.org/10.15294/jpii.v9i3.24706

M. Baran, A. Maskan, and S. Yasar, “Learning physics through project-based learning game techniques,” Int. J. Instruc. 11 (2018) 221-234. https://doi.org/10.12973/iji.2018.11215a

N. Aliane, “Spreadsheet‐based interactive modules for control education,” Comp. Appl. Eng. Edu. 18 (2010) 166-174. https://doi.org/10.1002/cae.20221

J. E. Hasbun and T. Datta, “Introductory solid state physics with MATLAB applications,” CRC Press, (2019).

W. S. Subhani, K. Wang, M. Du, X. Wang, and S. Liu, “Interface‐modification‐induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells,” Adv. Energy Mater. 9 (2019) 180-186. https://doi.org/10.1002/aenm.201803785

S. Carr, S. Fang, H. C. Po, A. Vishwanath, and E. Kaxiras, “Derivation of Wannier orbitals and minimal-basis tight-binding Hamiltonians for twisted bilayer graphene: First-principles approach,” Physic. Rev. Res. 1 (2019) 330-2336. https://doi.org/10.1103/PhysRevResearch.1.033072

J. H. Bombile, M. J. Janik, and S. T. Milner, “Energetics of exciton binding and dissociation in polythiophenes: A tight-binding approach,” Physic. Chem. Chemic. Phys. 21 (2019) 11999-12011. https://doi.org/10.1039/C9CP01116A

N. W. Ashcroft and N. D. Mermin, “Introduction to solid-state physics,” Brooks Cole, (1976).

J. J. Quinn and K. S. Yi, “Solid-state physics: Principles and modern applications,” Springer Science & Business Media, (2009).

S. Y. Erinosho, “How do students perceive the difficulty of physics in secondary school? An exploratory study in Nigeria,” Int. J. Cross-Discipl. Subj. Edu. 3 (2013) 1510-1515. https://doi.org/10.20533/ijcdse.2042.6364.2013.0212

K. S. Preeti, V. Singh, and M. S. Gupta, “Implementation of private cloud computing using the integration of JavaScript and Python,” Python Papers Monogr. 2 (2010), 19-26.

Z. J. Kovačić and J. S. Green, “Automatic grading of spreadsheet and database skills,” J. Inform. Tech. Edu. 11 (2012) 53-70. https://doi.org/10.28945/1562

Z. Uddin, M. Ahsanuddin, and D. A. Khan, “Teaching physics using Microsoft excel,” Phys. Educ. 52 (2017) 530-536. https://doi.org/10.1088/1361-6552/aa7919

I. Grigore and E. S. Barna, “Using Excel spreadsheets to study the vertical motion in a gravitational field,” Procedia-Soc. Behav. Sci. 191 (2015) 2769-2775. https://doi.org/10.1016/j.sbspro.2015.04.259

J. M. Sáez-López, M. Román-González, and E. Vázquez-Cano, “Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools,” Comp. Edu. 97 (2016) 129-141. https://doi.org/10.1016

/j.compedu.2016.03.003

S. Larson and J. Yamamoto, “Flipping the college spreadsheet skills classroom: Initial empirical results,” J. Emerg. Trends Comp. Inform. Sci. 4 (2013) 751-758.

R. S. Davies, D. L. Dean, and N. Ball, “Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course,” Edu. Tech. Res. Develop. 61 (2013) 563-580. https://doi.org/10.1007/s11423-013-9305-6

Y. Wang, W. D. Cai, and P. C. Wei, “A deep learning approach for detecting malicious JavaScript code,” Secure. Comm. Netw. 9 (2016) 1520-1534. https://doi.org/10.1002/sec.1441

M. M. Alvarez, S. Bravo-González, and G. Trujillo-de Santiago, “Modeling vaccination strategies in an Excel spreadsheet: Increasing the rate of vaccination is more effective than increasing the vaccination coverage for containing COVID-19,” PloS One. 16 (2021) 254-259. https://doi.org/10.1371/journal.pone.0254430

M. V. Bøe, E. K. Henriksen, and C. Angell, “Actual versus implied physics students: How students from traditional physics classrooms related to an innovative approach to quantum physics,” Sci. Edu. 102 (2018) 649-667. https://doi.org/10.1002/sce.21339

S. Sotiriou and F. X. Bogner, “Visualizing the invisible: augmented reality as an innovative science education scheme,” Adv. Sci. Lett. 1 (2008) 114-122. https://doi.org/10.1166/asl.2008.012

H. Georgiou and M. D. Sharma, “Does using active learning in thermodynamics lectures improve students' conceptual understanding and learning experiences?,” European J. Phys. 36 (2014) 150-156. https://doi.org/10.1088/0143-0807/36/1/015020

M. L. Sevillano-Garcia and E. Vázquez-Cano, “The impact of digital mobile devices in higher education,” J. Edu. Tech Soc. 18 (2015) 106-118.

Downloads

Published

2022-04-30

How to Cite

[1]
A. Y. Purnama, H. Kuswanto, S. Ayunisa Rani, and H. Putranta, “Visualization of face-centered cubic energy band using spreadsheet and javascript as innovative learning”, Rev. Mex. Fis. E, vol. 19, no. 2 Jul-Dec, pp. 020205 1–, Apr. 2022.