Local time in Lagrangian mechanics





Lagrangian formulation; local time; Hamiltonian formulation; Schr\


We show that under the replacement of the time by a local time in the Lagrange equations, the form of the equations is maintained if the Lagrangian does not depend explicitly on the time. We also study the corresponding modifications in the Hamilton equations and in the Hamilton--Jacobi equation.


G.F. Torres del Castillo, An Introduction to Hamiltonian Mechanics (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-95225-3.

L.A. Pars, A Treatise on Analytical Dynamics (Wiley, New York, 1965; reprinted by Ox Bow Press, 1979). https://doi.org/10.2307/3612016.

D.T. Greenwood, Classical Dynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1977; reprinted by Dover, 1997), Sec. 2-3.

A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I (Birkhäuser, Basel, 1990), Sect. 2.3. https://doi.org/10.1007/978-3-0348-9257-5.

G.F. Torres del Castillo, The use of fictitious time in Lagrangian mechanics, Rev. Mex. Fıs. E 18 (2021) 020201. https://doi.org/10.31349/RevMexFisE.18.020201.

G.F. Torres del Castillo, The Stäckel theorem in the Lagrangian formalism and the use of local times, Rev. Mex. Fıs. 67 (2021) 447. https://doi.org/10.31349/RevMexFis.67.447.

D.C. Khandekar, S.V. Lawande, and K.V. Bhagwat, PathIntegral Methods and their Applications (World Scientific, Singapore, 1993), Sec. 5.2. https://doi.org/10.1142/1332.




How to Cite

G. F. Torres del Castillo, “Local time in Lagrangian mechanics”, Rev. Mex. Fis. E, vol. 19, no. 2 Jul-Dec, pp. 020209 1–, Jul. 2022.