The motion of a particle on the surface of a general cone

Authors

  • Diego Gerardo Gómez Pérez Facultad de Ciencias Físico Matemáticas, Universidad Autónoma De Nuevo León.
  • Omar Gonzalez Amezcua Universidad Autónoma de Nuevo León Facultad de Ciencias Físico Matemática.

DOI:

https://doi.org/10.31349/RevMexFisE.21.010206

Keywords:

Angular momentum; cone; Wolfram mathematica

Abstract

We use the formalism of Lagrange to find the equations of motion of a particle on the inner surface of a “general cone”. The equations of motion are challenging to solve, but we can evaluate them numerically with different software, to obtain the particle’s trajectory on the surface as a function of parameters such as angular momentum Lθ, cone shape and initial conditions, and then we find the total free-fall time of the particle. The results show a special cone in which the free fall time has a minimum for a fixed angular momentum and fall height. Differences in the free-fall times and the particle’s trajectory also analyzed for a two-coordinate (r, z) and three-coordinate (r, θ, z) system. This work shows the importance of learning to use software (Wolfram Mathematica, Python, POV-Ray) to help with some complex theoretical problems. Finally, the results can easily be generalized for other more complex surfaces.

Author Biography

Omar Gonzalez Amezcua, Universidad Autónoma de Nuevo León Facultad de Ciencias Físico Matemática.

 Departamento de Fisica

References

W. Greiner, Classical Mechanics, 2nd ed. (Springer-Verlag, Berlin Heidelberg, 2010).

S. Thornton and J. Marion, Classical Dynamics of Particles and Systems, 5th ed. (Thomson Learning, Belmont, 2004).

C. P. P. H. Goldstein and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, Delhi, 2006).

I. Campos et al., A sphere rolling on the inside surface of a cone, European J. Phys. 27 (2006) 567, https://doi.org/10.1088/0143-0807/27/3/011.

K. Kowalski and J. Rembielinski, On the dynamics of a particle on a cone, Annals of Physics 329 (2013) 146, https://doi.org/10.1016/j.aop.2012.10.003.

R. López-Ruiz and A. F. Pacheco, Sliding on the inside of a conical surface, European J. Phys. 23 (2002) 579, https://doi.org/10.1088/0143-0807/23/5/314.

D. M. n Quiroz, Motion of a rolling sphere on an azimuthally symmetric surface, Rev. Mex. Fis. E 65 (2019) 128, https://doi.org/10.31349/RevMexFisE.65.128.

S. Hassani, Mathematical Physics: A Modern Introduction to Its Foundations, 2nd ed. (Springer, 2013).

Some codes to plot the particle trajectory are available in this link https://drive.google.com/drive/folders/1pjnMVJA7wOdzaUGHWeOkD9EEzhaf7ENq.

Y. Brihaye, P. Kosinski, and P. Maslanka, Dynamics on the cone: Closed orbits and superintegrability, Annals of Physics 344 (2014) 253, https://doi.org/10.1016/j.aop.2014.02.022.

J. A. Morales-Vidales et al., Platonic Solids and Their Programming: A Geometrical Approach, Journal of Chemical Education 97 (2020) 1017, https://doi.org/10.1021/acs.jchemed.9b00751.

Downloads

Published

2024-01-05

How to Cite

[1]
D. G. Gómez Pérez and O. G. Amezcua, “ The motion of a particle on the surface of a general cone”, Rev. Mex. Fis. E, vol. 21, no. 1 Jan-Jun, pp. 010206 1–, Jan. 2024.