The propagator of the inverted Caldirola-Kanai Oscillator

Authors

  • Umpon Jairuk Division of physics, Rajamangala University of Technology Thanyaburi
  • Surarit Pepore Division of Physics, Rajamangala University of Technology Thanyaburi

DOI:

https://doi.org/10.31349/RevMexFisE.21.020214

Keywords:

Propagator; inverted Caldirola-Kanai oscillator; Feynman path integral; Schwinger method; integrals of the motion

Abstract

In this paper, we will derive the propagators for an inverted Caldirola-Kanai oscillator by the Feynman path integral, the Schwinger method, and the Dodonov method. In Feynman path inte-gral, the propagator can be calculated from the functional integrals while in the Schwinger method the propagator can be obtained from basic operator algebra and elementary integrations. In Dodonov method, the propagator can be derived from the application of the integrals of the motion of quantum systems. Furthermore, the connection between these methods is also discussed.

References

E. Merzbacher, Quantum mechanics, 3rd. ed. (John Wiley and Sons, 1998), pp. 25-75

R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integral, (McGraw-Hill: New York, 1965), pp. 15-37

R.P. Feynman, Space-time approach to non relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948) 367, https://doi.org/10.1103/RevModPhys.20.367

L.S. Schulman, Techniques and application of path integrals, (McGraw-Hill, New York, 1965), pp. 47-57

A. Das, Field Theory: A path integral approach (World Scientific, Singapore, 1993), pp. 20-60

J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664-679

J.D. Likken, J. Sonnenschein, and N. Weiss, The theory of anionic superconductivity: A review, Int. J. Mod. Phys. A. 6 (1991) 5155, https://doi.org/10.1142/S0217751X91002434

. H.B. Filho, C. Farina and A.N. Vaidya, Schwinger’s method for electron propagator in a plane wave field revisited, Phys. Lett. A. 215 (1996) 109, https://doi.org/10.1016/0375-9601(96)00228-9

C. Farina and A.S. Santonja, Schwinger’s method for a harmonic oscillator with a time-dependent frequency, Phys. Lett. A. 184 (1993) 23, https://doi.org/10.1016/0375-9601(93)90340-6

S. Pepore and B. Sukbot, Schwinger method and Feynman path integral for a harmonic oscillator with mass growing with time, Chin. J. Phys. 53 (2015) 060004

S. Pepore and B. Subbot, Schwinger method for dual damped oscillators, Chinese. J. Phys. 53 (2015) 100002

S. Pepore and B. Sukbot, Schwinger method for coupled harmonic oscillators and time-dependent linear potential, Chinese. J. Phys. 53 (2015) 120004

V.V. Dodonov, I.A. Malkin and V.I. Man’ko, Integrals of the motion, Green function, and coherent states of dynamical systems, Int. J. Theor. Phys. 14 (1975) 37, https://doi.org/10.1007/BF01807990

V.V. Dodonov, I.A. Malkin and V.I. Man’ko, Coherent states and Green functions of relativistic quadratic systems, Physcia. A. 82 (1976) 113, https://doi.org/10.1016/0378-4371(76)90094-7

S. Pepore, Integrals of the motion and Green functions for timedependent mass harmonic oscillators, Rev. Mex. Fis. 64 (2018) 30-35

S. Pepore, Integrals of the motion and Green function for dual damped oscillators and coupled harmonic oscillators, Rev. Mex. Fis. 64 (2018) 150, https://doi.org/10.31349/RevMexFis.64.150

S. Baskoutas and A. Jannussis, Quantum mechanics of the inverted Caldilora-Kanai oscillator, J. Phys. A. 27 (1994) 2189, https://doi.org/10.1007/BF02728488

V. Subramanyan, S.S. Hedge, S. Vishveshwara, and B. Bradlyn, Physics of the inverted harmonic oscillator: From the lowest Landau to event horizons, Ann. Phys. 435 (2021) 1684705, https://doi.org/10.1016/j.aop.2021.168470

D.C. Khandekar, S.V. Lawande, and K.V. Bhagwat, Path integral method and their applications (World Scientific, Singapore, 1993), pp. 29-34

L.Q. English and R.R. Winters, Continued fractions and the harmonic oscillator using Feynman path integral, Am. J. Phys. 65 (1997) 390, https://doi.org/10.1119/1.18545

S.M. Cohen, Path integral for the quantum harmonic oscillator using elementary methods, Am. J. Phys. 66 (1997) 537, https://doi.org/10.1119/1.18896

K. Hira, Derivation of the harmonic oscillator propagator using the Feynman path integral and recursive relations, Eur. J. Phys. 34 (2013) 777, https://dx.doi.org/10.1088/0143-0807/34/3/777

Downloads

Published

2024-07-01

How to Cite

[1]
U. Jairuk and S. Pepore, “The propagator of the inverted Caldirola-Kanai Oscillator”, Rev. Mex. Fis. E, vol. 21, no. 2 Jul-Dec, pp. 020214 1–, Jul. 2024.