Particle trajectory simulation using python and spreadsheet as an online learning alternative

Authors

  • Aditya Yoga Purnama Yogyakarta State University
  • Ariswan Universitas Negeri Yogyakarta
  • Edi Istiyono Universitas Negeri Yogyakarta
  • Himawan Putranta Universitas Islam Negeri Sunan Kalijaga Yogyakarta
  • Syella Ayunisa Rani Universitas Negeri Yogyakarta
  • Astuti Wijayanti Universitas Negeri Yogyakarta
  • Ragil Saputri Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.31349/RevMexFisE.20.020202

Keywords:

Technology, Particles, Python

Abstract

Education today is required to utilize technological knowledge and skills in preparation for global competition. Along with the rapid development of technology, educators are required to develop learning alternatives. The purpose of this research is to create a particle trajectory simulation that is used as an alternative to online learning. The simulation uses Python programming language and Origin Pro assisted spreadsheet. Simulation in Python programming uses the Euler Cromer method to describe particle trajectories affected by electric and magnetic fields. This paper has successfully simulated particle trajectories affected by electric and magnetic fields with the Python programming language and Spreadsheet. The case where the motion of a charged particle is affected by a combination of electric and magnetic fields is when a positively charged particle moves perpendicular to the magnetic field, it will form a helical trajectory. However, when the electric field is in the direction of the magnetic field, the motion in the direction of the magnetic field will be accelerated by the electric force in the direction of the magnetic field which causes the helix to increase in width.

References

Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2017). The effect of problem based learning (PBL) instruction on students’ motivation and problem solving skills of physics. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 857–871. https://doi.org/10.12973/eurasia.2017.00647a

Ari, N., & Ustazhanov, M. (2014). Matplotlib in python. Proceedings of the 11th International Conference on Electronics, Computer and Computation, ICECCO 2014. https://doi.org/10.1109/ICECCO.2014.6997585

Arista, F. S., & Kuswanto, H. (2018). Virtual physics laboratory application based on the android smartphone to improve learning independence and conceptual understanding. International Journal of Instruction, 11(1), 1–16. https://doi.org/10.12973/iji.2018.1111a

Astra, I. M., Nasbey, H., & Nugraha, A. (2015). Development of an android application in the form of a simulation lab as learning media for senior high school students. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 1081–1088. https://doi.org/10.12973/eurasia.2015.1376a

Civelek, T., Ucar, E., Ustunel, H., & Aydin, M. K. (2014). Effects of a haptic augmented simulation on K-12 students’ achievement and their attitudes towards physics. Eurasia Journal of Mathematics, Science and Technology Education, 10(6), 565–574. https://doi.org/10.12973/eurasia.2014.1122a

Cui, H., & Li, F. (2019). ANDES: A Python-Based Cyber-Physical Power System Simulation Tool. 2018 North American Power Symposium, NAPS 2018, 1–6. https://doi.org/10.1109/NAPS.2018.8600596

Formanek, M., Steinmetz, A., & Rafelski, J. (2021). Motion of classical charged particles with magnetic moment in external plane-wave electromagnetic fields. Physical Review A, 103(5), 1–10. https://doi.org/10.1103/PhysRevA.103.052218

Janah, N. M., Falah, F., Ratnawati, R., Ishafit, I., & Dwandaru, W. S. B. (2021). Comparison of Euler and Euler-Cromer Numerical Methods for Undamped and Damped Spring Oscillation. Indonesian Review of Physics, 4(2), 8–16. https://doi.org/10.12928/irip.v4i2.4803

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., & Christensen, R. (2017). The Atomic Simulation Environment-A Python Library for Working With Atoms. In J. Phys.: Condens. Matter (Vol. 29, Issue 134). https://doi.org/DOI 10.1088/1361-648X/aa680e

M. Gunawan Supiarmo, Turmudi, & Elly Susanti. (2021). Proses Berpikir Komputasional Siswa Dalam Menyelesaikan Soal Pisa Konten Change and Relationship Berdasarkan Self-Regulated Learning. Numeracy, 8(1), 58–72. https://doi.org/10.46244/numeracy.v8i1.1378

Mouromadhoni, K. R., & Kuswanto, H. (2020). Visualisasi Karakter Gelombang Lissajous Pada Osiloskop Menggunakan Spreadsheet Microsoft Excel Pada Pembelajaran Fisika. Edusains, 11(2), 186–194. https://doi.org/10.15408/es.v11i2.11338

Muktar B. Panjaitan, Andriono Manalu, R. D. M. S. (2020). Kemampuan Metakognisi Dan Hubungannya Dengan Hasil Belajar Mahasiswa Mata Kuliah Fisika Kuantum Materi Sifat Partikel Dari Gelombang. Jurnal Ilmiah Simantek, 4(2), 12–21.

Purnama, A. Y., Kuswanto, H., Rani, S. A., Putranta, H., Hariati, P., Yogyakarta, U. N., Yogyakarta, U. N., Pendidikan, I., Tamansiswa, U. S., & Batikan, J. (2021). Simulasi Difraksi Fraunhofer Menggunakan Media Spreadsheet dan GNU Octave Sebagai Alternatif Pembelajaran dimasa Pandemi. 5(2), 1–8.

Raturandang, S., Rompas, P. T. D., & Palilingan, V. R. (2021). EduTIK: Jurnal Pendidikan Teknologi Informasi dan Komunikasi Volume 1 Nomor 3, Juni 2021. 1(April), 8–21.

Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational thinking by young children. Computers and Education, 169(September 2020), 104222. https://doi.org/10.1016/j.compedu.2021.104222

Rionaldo, H. (2021). Perancangan dan Pembuatan Program Simulasi Kesetimbangan Termodinamika untuk Proses Gasifikasi Biomassa. Jurnal Teknik: Media Pengembangan Ilmu …, 20(01). http://jurnalteknik.unjani.ac.id/index.php/jt/article/view/416%0A http://jurnalteknik.unjani.ac.id/index.php/jt/article/download/416/210

Saroja, G., & Nuriyah, L. (2019). Numerical solution of nonlinear vibration by euler-cromer method. IOP Conference Series: Materials Science and Engineering, 546(3). https://doi.org/10.1088/1757-899X/546/3/032029

Seila, A. F. (2006). Spreadsheet simulation. Proceedings - Winter Simulation Conference, 11–18. https://doi.org/10.1109/WSC.2006.323034

Serrano Corkin, D., Coleman, S. L., & Ekmekci, A. (2019). Navigating the Challenges of Student-Centered Mathematics Teaching in an Urban Context. Urban Review, 51(3), 370–403. https://doi.org/10.1007/s11256-018-0485-6

Singh, I., Khun, K. K., & Kaur, B. (2019). Visualizing the trajectory of a charged particle in electric and magnetic fields using an Excel spreadsheet. Physics Education, 54(1). https://doi.org/10.1088/1361-6552/aae3fd

Utari, K., Mulyaningsih, N. N., Astuti, I. A. D., Bhakti, Y. B., & Zulherman, Z. (2021). Physics calculator application with matlab as a learning media to thermodynamics concept. Momentum: Physics Education Journal, 5(2), 101–110. https://doi.org/10.21067/mpej.v5i2.5133

Wang, J. Y., Wu, H. K., & Hsu, Y. S. (2017). Using mobile applications for learning: Effects of simulation design, visual-motor integration, and spatial ability on high school students’ conceptual understanding. Computers in Human Behavior, 66, 103–113. https://doi.org/10.1016/j.chb.2016.09.032

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Downloads

Published

2023-06-28

How to Cite

[1]
A. Y. Purnama, “Particle trajectory simulation using python and spreadsheet as an online learning alternative”, Rev. Mex. Fis. E, vol. 20, no. 2 Jul-Dec, pp. 020202 1–, Jun. 2023.