Non-relativistic representation of the Jackiw-Rebbi soliton
DOI:
https://doi.org/10.31349/RevMexFisE.20.020501Keywords:
Jackiw-Rebbi model, Foldy-Wouthuysen transformation, topological insulatorsAbstract
We consider the Foldy-Whouthuysen (FW) transformation of the Dirac equation coupled to a background soliton field which is equivalent to a position-dependent massm(x) such that at each limit x → ±∞, the mass to the left and to the right tends to a (possibly different) constant, with a sign difference at each side. We then build-up a third order unitarily transformed Schrödinger-like Hamiltonian as a counterpart of the corresponding to the well known Jackiw-Rebbi model. By further FW-transforming the Dirac spinor, we establish the relation between the non-relativistic and relativistic wave functions up to this order of approximation for generic position dependent mass profiles. For the economic choice m(x) = m0x/|x|, we find that these spinors are the same up to an overall constant.
References
R. Jackiw and C. Rebbi, Solitons with fermion number ½, Phys. Rev. D 13 (1976) 3398, https://doi.org/10.1103/PhysRevD.13.3398
A. Niemi and G. Semenoff, Fermion number fractionization in quantum field theory, Physics Reports 135 (1986) 99, https://doi.org/10.1016/0370-1573(86)90167-5
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48 (1982) 1559, https://doi.org/10.1103/PhysRevLett.48.1559
D. K. Campbell and A. R. Bishop, Solitons in polyacetylene and relativistic-field-theory models, Phys. Rev. B 24 (1981) 4859, https://doi.org/10.1103/PhysRevB.24.4859.
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations in polyacetylene, Phys. Rev. B 22 (1980) 2099, https://doi.org/10.1103/PhysRevB.22.2099
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045, https://doi.org/10.1103/RevModPhys.82.3045
X. Yuan, M. Bowen, and P. S. Riseborough, The Dirac equation as a model of topological insulators, Philosophical Magazine 100 (2020) 1324, https://doi.org/10.1080/14786435.2020.1726523
D. G. Angelakis, P. Das, and C. Noh, Probing the topological properties of the Jackiw-Rebbi model with light, Scientific Reports 4 (2014) 6110, https://doi.org/10.1038/srep06110
T. X. Tran and F. Biancalana, Linear and nonlinear photonic Jackiw-Rebbi states in interfaced binary waveguide arrays, Phys. Rev. A 96 (2017) 013831, https://doi.org/10.1103/PhysRevA.96.013831
G. González, Dirac Equation and Optical Wave Propagation in One Dimension, physica status solidi (RRL) – Rapid Research Letters 12 (2018) 1700357, https://doi.org/10.1002/pssr.201700357
G. Gonzalez, Dirac equation in one dimensional transformation optics (2017), 10.48550/ARXIV.1707.06743, URL: https://arxiv.org/abs/1707.06743.
G. Gonzalez, et al., Electrostatic simulation of the Jackiw-Rebbi zero energy state, Rev. Mex. Fis. E 65 (2019) 30–33 https://doi.org/10.31349/RevMexFisE.65.30
R. Rubiano, Magnetostatic Analogy of the Zero Energy State of Jackiw-Rebbi (2019), 10.48550/ARXIV.1907.04479, URL: https://arxiv.org/abs/1907.04479.
F. Khosravi, T. Van Mechelen, and Z. Jacob, Dirac wire: Fermionic waveguides with longitudinal spin, Phys. Rev. B 100 (2019) 155105, https://doi.org/10.1103/PhysRevB.100.155105
Y. Nishida, L. Santos, and C. Chamon, Topological superconductors as nonrelativistic limits of Jackiw-Rossi and Jackiw-Rebbi models, Phys. Rev. B 82 (2010) 144513, https://doi.org/10.1103/PhysRevB.82.144513
L. L. Foldy and S. A. Wouthuysen, On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit, Phys. Rev. 78 (1950) 29, https://doi.org/10.1103/PhysRev.78.29
T. L. Li and K. J. Kuhn, Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the GaAs-AlxGa1−xAs quantum well, Phys. Rev. B 47 (1993) 12760, https://doi.org/10.1103/PhysRevB.47.12760
F. S. A. Cavalcante, et al., Form of the quantum kinetic-energy operator with spatially varying effective mass, Phys. Rev. B 55 (1997) 1326, https://doi.org/10.1103/PhysRevB.55.1326
S. S.-Q. Shen, Topological Insulators, 1st ed. (Springer Berlin, Heidelberg, 2012), p. 225.
E. Ley-Koo, Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings, Rev. Mex. Fís. 64 (2018) 326, https://doi.org/10.31349/RevMexFis.64.326
D. J. Griffiths, Introduction to electrodynamics, 2nd ed.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 David Valenzuela, Julio César Pérez Pedraza, Alfredo Raya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.