Modos electromagnéticos localizados
DOI:
https://doi.org/10.31349/RevMexFis.21.020220Keywords:
Physics Teaching, Electromagnetism, Localized wavesAbstract
En este trabajo se presenta un estudio teórico detallado sobre los modos propios electromagnéticos localizados en una capa dieléctrica que está rodeada por medios dieléctricos semi-infinitos. La relación de dispersión y la distribución de campo electromagnético de los modos propios localizados se calcularon y se analizaron aplicando el formalismo de la matriz de transferencia. Para el estudio de este sistema se emplearon las polarizaciones lineales de la luz s y p. En ambos casos, existe un número infinito de modos propios localizados cuando la permitividad de la capa dieléctrica tiene signo positivo y es mayor que la permitividad del medio circundante. Por el contrario, cuando la permitividad de la capa dieléctrica es negativa, solo hay un modo propio electromagnético localizado. Esto último ocurre únicamente para el caso de polarización p. El espectro de este modo propio localizado depende no solo del signo negativo de la permitividad de la capa, sino también de la diferencia entre el valor absoluto de la permitividad de la capa y la permitividad del medio adyacente. Además, se discute la simetría de los modos propios electromagnéticos localizados.
The localized electromagnetic eigenmodes in a dielectric slab, sandwiched between two semi-infinite dielectric media, are theoretically studied. The transfer matrix formalism is applied for deriving the dispersion relation and electromagnetic field distribution of the localized eigenmodes for both s and p polarization of light. There is an infinite number of localized eigenmodes when the permittivity of the slab has positive sign in either s or p polarization. The latter occurs if the permittivity of the slab is greater than the permittivity of the surrounding media. In contrast, when the slab has negative permittivity there is just one localized electromagnetic eigenmode only for the p-polarization. In his case, the spectrum of the localized eigenmode is determined not only by the negative sign of the slab permittivity, but also by the difference between the permittivity absolute value for the slab and the permittivity of the surrounding medium. In addition, the symmetry of the localized electromagnetic eigenmodes is discussed.
References
Z.N. Chen, D. Liu, H. Nakano, X. Qing and T. Zwick, Handbook of antenna technologies, (Springer Publishing Company, Incorporated, 2016).
H.E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized waves, vol. 194 (John Wiley & Sons, 2008).
P. Markos and C.M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008), https://doi.org/10.1515/9781400835676.
T.M. Slipchenko, D.V. Kadygrob, D. Bogdanis, V.A. Yampol’skii and A.A. Krokhin, Surface and waveguide Josephson plasma waves in slabs of layered superconductors, Phys. Rev. B 84 (2011) 224512, https://doi.org10.1103/PhysRevB.84.224512
S. Cortés-López and F. Pérez-Rodríguez, Nonlocal optical response of a layered high-temperature superconductor slab, Low Temperature Physics 44 (2018) 1272, https://doi.org/10.1063/1.5078611
S. Cortés-López and F. Pérez-Rodríguez, Excitation of Josephson plasma waves in a layered high-temperature superconductor
slab embedded in a high refractive index dielectric, Low Temperature Physics 46 (2020) 531, https://doi.org/10.1063/10.0001058
S.S. Apostolov, V.I. Havrilenko, Z.A. Maizelis and V.A. Yampols’kii, Anomalous dispersion of surface and waveguide modes in layered superconductor slabs, Low Temperature Physics 43 (2017) 296, https://doi.org/10.1063/1.4977740
S.S. Apostolov, N.M. Makarov, and V.A. Yampol’skii, Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission, Phys. Rev. B 97 (2018) 024510, https://doi.org/10.1103/PhysRevB.97.024510
Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael and T.W. Mossberg, Vacuum Rabi splitting as a feature of linear dispersion theory: Analysis and experimental observations, Phys. Rev. Lett. 64 (1990) 2499, https://doi.org/10.1103/PhysRevLett.64.2499
C. Weisbuch, M. Nishioka, A. Ishikawa and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69 (1992) 3314, https://doi.org/10.1103/PhysRevLett.69.3314
B. Deveaud, The Physics of Semiconductor Microcavities (Wiley-VCH, 2007).
P.A. Hobson, W.L. Barnes, D.G. Lidzey, G.A. Gehring, D.M. Whittaker, M.S. Skolnick and S.Walker, Strong exciton-photon coupling in a low-Q all-metal mirror microcavity, Appl. Phys. Lett. 81 (2002) 3519, https://doi.org/10.1063/1.1517714
P.L. Valdés-Negrin, B. Flores-Desirena, M. Toledo-Solano and F. Pérez-Rodríguez, Magnetoexciton-photon coupling in a semiconductor quantum microcavity subjected to a parallel electric field, AIP Advances 10 (2020) 065223, https://doi.org/10.1063/5.0011533
P.L. Valdés-Negrin, N.M. Makarov, and F. Pérez-Rodríguez, Excitation of weak and strong guided waves in a semiconductor slab and their strong coupling with confined magnetoexcitons, Physical Review B 105 (2022) 245309, https://doi.org/10.1103/PhysRevB.105.245309
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nykolay Makarov, J. G. Medrano, F. Pérez-Rodríguez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.