Quantitative characterization of light through a homemade spectrometer: A STEM project-based learning activity

Authors

DOI:

https://doi.org/10.31349/RevMexFisE.22.010205

Keywords:

Spectrometry; project-based learning; STEM education

Abstract

This paper introduces students to quantitative spectrometry using a hands-on approach, building a simple, low-cost spectrometer to characterize discrete or continuous light spectra, using a smartphone or laptop camera. This project-based learning activity is performed without any specialized equipment (favoring inclusive education at high school and university levels) and allows students to develop scientific skills through the measurement and characterization of light sources, reinforces technological and engineering skills through the construction of the optical instrument and the analysis of light spectra through free software, and applies mathematical competences through the statistical analysis of data. The project is an inclusive and integrative STEM activity, building contextualized and quantitative knowledge in these areas.

Author Biography

Ana R. Romero Castellanos, Dirección de Ciencias Básicas, Universidad ECCI

BSc in Physics and MSc in Physics of Universidad Nacional de Colombia and PhD in Physics from Universidade Estadual de Campinas (UNICAMP). My research interesets are concerned with Cosmology (inflation and modified gravity theories), Dark matter and physics education.

Professor of Physics at Dirección de Ciencias Básicas, Universidad ECCI, Bogotá, Colombia.

References

R. W. Bybee, What is STEM education? Science 329 (2010) 996, https://www.science.org/doi/10.1126/science.1194998

R. M. Capraro, M. M. Capraro, and J. R. Morgan, STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach (Springer Science & Business Media, 2013), https://doi.org/10.1007/978-94-6209-143-6

T. B. Greenslade Jr, The spectrometer, Phys. Teach. 50 (2012) 152, https://doi.org/10.1119/1.3685111

H.-H. Perkampus, UV-VIS Spectroscopy and its Applications (Springer Science & Business Media, 2013). https://doi.org/10.1007/978-3-642-77477-5

M. T. Mesilaakso, Application of NMR spectroscopy to environmental analysis: Detection of trace amounts of chemical warfare agents and related compounds in organic extract, water, and sand, Environ. Sci. Technol. 31 (1997) 518, https://doi.org/10.1021/es960352z

Z. Li, J.Wang, and D. Li, Applications of Raman spectroscopy in detection of water quality, Appl. Spectrosc. Rev. 51 (2016) 333, https://doi.org/10.1080/05704928.2015.1131711

D. Cenadelli, M. Potenza, and M. Zeni, Stellar by Wien’s law: Not so simple, Am. J. Phys. 80 (2012) 391, https://doi.org/10.1119/1.3699958

S. Taha et al., A simple homemade spectrophotometer, J. Anal. Chem. 72 (2017) 239, https://doi.org/10.1134/S1061934817020113

T. T. Grove et al., Using a shoebox spectrograph to investigate the differences between reflection and emission, Am. J. Phys. 86 (2018) 594, https://doi.org/10.1119/1.5045205

P. Onorato, M. Malgieri, and A. De Ambrosis, Measuring the hydrogen Balmer series and Rydberg’s constant with a homemade spectrophotometer, Eur. J. Phys. 36 (2015) 058001, https://doi.org/10.1088/0143-0807/36/5/058001

Y.-G. Ju, Fabrication of a low-cost and high-resolution papercraft smartphone spectrometer, Phys. Educ. 55 (2020) 035005, https://doi.org/10.1088/1361-6552/ab6c3e

B. S. Hosker, Demonstrating principles of spectrophotometry by constructing a simple, low-cost, functional spectrophotometer utilizing the light sensor on a smartphone, J. Chem. Educ. 95 (2018) 178, https://doi.org/10.1021/acs.jchemed.7b00548

R. D. Lorenz, A simple webcam spectrograph, Am. J. Phys. 82 (2014) 169, https://doi.org/10.1119/1.4853835

D. A. Zollman, N. S. Rebello, and K. Hogg, Quantum mechanics for everyone: Hands-on activities integrated with technology, Am. J. Phys. 70 (2002) 252, https://doi.org/10.1119/1.1435347

B. J. Pearson and D. P. Jackson, A hands-on introduction to single photons and quantum mechanics for undergraduates, Am. J. Phys. 78 (2010) 471, https://doi.org/10.1119/1.3354986

Tracker video analysis and modelling tool, https://physlets.org/tracker/ Accessed:2023-05-10

M. Rodrigues, M. Marques, and P. S. Carvalho, Measuring and teaching light spectrum using Tracker as a spectrometer, In Education and Training in Optics and Photonics (Optica Publishing Group, 2015) p. TPE30

D. Brown and A. J. Cox, Innovative uses of video analysis, Phys. Teach. 47 (2009) 145, https://doi.org/10.1119/1.3081296

T. Claessens, Analyzing virtual physics simulations with Tracker, Phys. Teach. 55 (2017) 558, https://doi.org/10.1119/1.5011834

A. R. R. Castellanos, C. E. Alvarez-Salazar, and P. C. d. Holanda, Testing discrepancies in the measurement of the acceleration of gravity in a physical pendulum experiment, Rev. Bras. Ensino Fis. 42 (2020) e20190154, https://doi.org/10.1590/1806-9126-RBEF-2019-0154

National Institute of Standards and Technology, https://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm Accessed: 2023-05-10

National Institute of Standards and Technology, https://physics.nist.gov/PhysRefData/Handbook/element name.htm Accessed:2023-05-10

J. G. Robertson, Quantifying resolving power in astronomical spectra, Publ. Astron. Soc. Aust. 30 (2013) e048, https://doi.org/10.1017/pasa.2013.26

Dispersion and spectral resolution, https://www.vikdhillon.staff.shef.ac.uk/

Hubble’s instruments: COS-Cosmic Origins Spectrograph, https://esahubble.org/about/general/instruments/cos/

Webb Science, https://science.nasa.gov/mission/webb/science-overview/

C. Honsberg and S. Bowden, Standard Solar Spectra, https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra

P. A. Tipler and R. A. Llewellyn, Modern physics (WH Freeman and Co., 2012)

J. Holmberg, C. Flynn, and L. Portinari, The colours of the Sun, MNRAS 367 (2006) 449, https://doi.org/10.1111/j.1365-2966.2005.09832.x

Downloads

Published

2025-01-01

How to Cite

[1]
A. R. Romero Castellanos, H. E. Castellanos Acuña, and C. Alvarez, “Quantitative characterization of light through a homemade spectrometer: A STEM project-based learning activity”, Rev. Mex. Fis. E, vol. 22, no. 1 Jan-Jun, pp. 010205 1–, Jan. 2025.