Quantitative characterization of light through a homemade spectrometer: A STEM project-based learning activity
DOI:
https://doi.org/10.31349/RevMexFisE.22.010205Keywords:
Spectrometry; project-based learning; STEM educationAbstract
This paper introduces students to quantitative spectrometry using a hands-on approach, building a simple, low-cost spectrometer to characterize discrete or continuous light spectra, using a smartphone or laptop camera. This project-based learning activity is performed without any specialized equipment (favoring inclusive education at high school and university levels) and allows students to develop scientific skills through the measurement and characterization of light sources, reinforces technological and engineering skills through the construction of the optical instrument and the analysis of light spectra through free software, and applies mathematical competences through the statistical analysis of data. The project is an inclusive and integrative STEM activity, building contextualized and quantitative knowledge in these areas.
References
R. W. Bybee, What is STEM education? Science 329 (2010) 996, https://www.science.org/doi/10.1126/science.1194998
R. M. Capraro, M. M. Capraro, and J. R. Morgan, STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach (Springer Science & Business Media, 2013), https://doi.org/10.1007/978-94-6209-143-6
T. B. Greenslade Jr, The spectrometer, Phys. Teach. 50 (2012) 152, https://doi.org/10.1119/1.3685111
H.-H. Perkampus, UV-VIS Spectroscopy and its Applications (Springer Science & Business Media, 2013). https://doi.org/10.1007/978-3-642-77477-5
M. T. Mesilaakso, Application of NMR spectroscopy to environmental analysis: Detection of trace amounts of chemical warfare agents and related compounds in organic extract, water, and sand, Environ. Sci. Technol. 31 (1997) 518, https://doi.org/10.1021/es960352z
Z. Li, J.Wang, and D. Li, Applications of Raman spectroscopy in detection of water quality, Appl. Spectrosc. Rev. 51 (2016) 333, https://doi.org/10.1080/05704928.2015.1131711
D. Cenadelli, M. Potenza, and M. Zeni, Stellar by Wien’s law: Not so simple, Am. J. Phys. 80 (2012) 391, https://doi.org/10.1119/1.3699958
S. Taha et al., A simple homemade spectrophotometer, J. Anal. Chem. 72 (2017) 239, https://doi.org/10.1134/S1061934817020113
T. T. Grove et al., Using a shoebox spectrograph to investigate the differences between reflection and emission, Am. J. Phys. 86 (2018) 594, https://doi.org/10.1119/1.5045205
P. Onorato, M. Malgieri, and A. De Ambrosis, Measuring the hydrogen Balmer series and Rydberg’s constant with a homemade spectrophotometer, Eur. J. Phys. 36 (2015) 058001, https://doi.org/10.1088/0143-0807/36/5/058001
Y.-G. Ju, Fabrication of a low-cost and high-resolution papercraft smartphone spectrometer, Phys. Educ. 55 (2020) 035005, https://doi.org/10.1088/1361-6552/ab6c3e
B. S. Hosker, Demonstrating principles of spectrophotometry by constructing a simple, low-cost, functional spectrophotometer utilizing the light sensor on a smartphone, J. Chem. Educ. 95 (2018) 178, https://doi.org/10.1021/acs.jchemed.7b00548
R. D. Lorenz, A simple webcam spectrograph, Am. J. Phys. 82 (2014) 169, https://doi.org/10.1119/1.4853835
D. A. Zollman, N. S. Rebello, and K. Hogg, Quantum mechanics for everyone: Hands-on activities integrated with technology, Am. J. Phys. 70 (2002) 252, https://doi.org/10.1119/1.1435347
B. J. Pearson and D. P. Jackson, A hands-on introduction to single photons and quantum mechanics for undergraduates, Am. J. Phys. 78 (2010) 471, https://doi.org/10.1119/1.3354986
Tracker video analysis and modelling tool, https://physlets.org/tracker/ Accessed:2023-05-10
M. Rodrigues, M. Marques, and P. S. Carvalho, Measuring and teaching light spectrum using Tracker as a spectrometer, In Education and Training in Optics and Photonics (Optica Publishing Group, 2015) p. TPE30
D. Brown and A. J. Cox, Innovative uses of video analysis, Phys. Teach. 47 (2009) 145, https://doi.org/10.1119/1.3081296
T. Claessens, Analyzing virtual physics simulations with Tracker, Phys. Teach. 55 (2017) 558, https://doi.org/10.1119/1.5011834
A. R. R. Castellanos, C. E. Alvarez-Salazar, and P. C. d. Holanda, Testing discrepancies in the measurement of the acceleration of gravity in a physical pendulum experiment, Rev. Bras. Ensino Fis. 42 (2020) e20190154, https://doi.org/10.1590/1806-9126-RBEF-2019-0154
National Institute of Standards and Technology, https://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm Accessed: 2023-05-10
National Institute of Standards and Technology, https://physics.nist.gov/PhysRefData/Handbook/element name.htm Accessed:2023-05-10
J. G. Robertson, Quantifying resolving power in astronomical spectra, Publ. Astron. Soc. Aust. 30 (2013) e048, https://doi.org/10.1017/pasa.2013.26
Dispersion and spectral resolution, https://www.vikdhillon.staff.shef.ac.uk/
Hubble’s instruments: COS-Cosmic Origins Spectrograph, https://esahubble.org/about/general/instruments/cos/
Webb Science, https://science.nasa.gov/mission/webb/science-overview/
C. Honsberg and S. Bowden, Standard Solar Spectra, https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
P. A. Tipler and R. A. Llewellyn, Modern physics (WH Freeman and Co., 2012)
J. Holmberg, C. Flynn, and L. Portinari, The colours of the Sun, MNRAS 367 (2006) 449, https://doi.org/10.1111/j.1365-2966.2005.09832.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana R. Romero Castellanos, H. E. Castellanos, C. E. Alvarez-Salazar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.