# Modeling damped spring vibration using python to train students' critical thinking and scientific reasoning

## Authors

• Semiono Raharjo Universitas Negeri Yogyakarta
• Edi Istiyono Universitas Negeri Yogyakarta
• Sugeng Bayu Wahyono Universitas Negeri Yogyakarta
• Ariswan Ariswan Universitas Negeri Yogyakarta
• supardi supardi Universitas Negeri Yogyakarta
• Aditya Yoga Purnama Universitas Negeri Yogyakarta

## Keywords:

simple harmonic vibration, under-damped, critically damped, over-damped

## Abstract

Programming has been carried out to model the vibration of a mass spring system with no damping and with damping variations using Python programming language coding. This research aims to simulate the simple harmonic vibration of a mass spring (without damping) and the vibration of a damped mass spring. The programming is designed after formulating the equations of motion of damped mass spring vibrations that behave as second-order differential equations and analyzing the numerical formulation of the Feynman-Newton algorithm arrangement. The method used is experimentation using python to simulate the vibration of the spring. Simulation by varying the damping constant (c = 0, c < √4mk, c = √4mk, and c > √4mk). The simulation results show various vibration graphs, namely simple harmonic vibration, under damped vibration, critically damped vibration, and over damped vibration. The shape of the vibration graph is influenced by the mass, spring constant, and damping constant. The greater the damping constant, the less the maximum speed of vibration. This research has succeeded in visualizing the simple harmonic vibration of a massless spring (without damping) and the vibration of a damped massless spring. This modeling can help the physics learning process in high school in understanding the concept of spring vibration to obtain critical reasoning in accordance with physical phenomena. Modeling of damped spring vibrations using Python can be used as a physics learning media on vibration material to train scientific and critical reasoning skills, and as a learning innovation because it is a new thing where the curriculum and high school learning in Indonesia are not used to being delivered.

## References

Arzola-Flores, J. A., García-García, E., Rojas-Rodríguez, J. F., Murueta-Fortiz, R., Corona-Morales, G., Hernández-Santiago, A., Ayala-Herrera, E., & Vidal-Robles, E. (2020). Spatial and temporal dynamics of belousov-Zhabotinsky reaction: A STEM approach. Revista Mexicana de Fisica E, 17(2), 178–190. https://doi.org/10.31349/REVMEXFISE.17.178

Badr, M. F., Karam, E. H., & Mjeed, N. M. (2020). Control design of damper mass spring system based on backstepping controller scheme. International Review of Applied Sciences and Engineering, 11(2), 181–187. https://doi.org/10.1556/1848.2020.20049

Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., Liu, Q., Ding, L., Cui, L., Luo, Y., Wang, Y., Li, E., & Wu, N. (2009). Physics: Learning and scientific reasoning. Science, 323(5914), 586–587. https://doi.org/10.1126/science.1167740

Brunt, B. A. (2005). Models, measurement, and strategies in developing critical-thinking skills. Journal of Continuing Education in Nursing, 36(6), 255–262. https://doi.org/10.3928/0022-0124-20051101-05

Cone, C., Godwin, D., Salazar, K., Bond, R., Thompson, M., & Myers, O. (2016). Incorporation of an explicit critical-thinking curriculum to improve pharmacy students’ critical-thinking skills. American Journal of Pharmaceutical Education, 80(3), 1–5. https://doi.org/10.5688/ajpe80341

Cristina Oliveira, M., & Nápoles, S. (2010). Using a Spreadsheet to Study the Oscillatory Movement of a Mass-Spring System. Spreadsheets in Education (EJSiE), 3(3).

Domínguez Jiménez, I., Hernández-Pinto, R. J., & Rentería-Estrada, D. F. (2020). Particle physics phenomenology with python 3: E- + ν¯e → e- + ν¯e scattering in the fermi theory. Revista Mexicana de Fisica E, 17(2), 150–155. https://doi.org/10.31349/REVMEXFISE.17.150

Dong, S., Tang, Z., Yang, X., Wu, M., Zhang, J., Zhu, T., & Xiao, S. (2020). Nonlinear Spring-Mass-Damper Modeling and Parameter Estimation of Train Frontal Crash Using CLGAN Model. Shock and Vibration, 2020. https://doi.org/10.1155/2020/9536915

Fauzi, A. (2011). Analisis Gerak Harmonik Teredam (Damped Harmonic Motion) Dengan Spreadsheet EXCEL. Orbith, 7(2), 1–5.

Forawi, S. A. (2016). Standard-based science education and critical thinking. Thinking Skills and Creativity:Elsevier, 20(52–62). https://doi.org/https://doi.org/10.1016/j.tsc.2016.02.005

Galih, W., & Pamungkas, T. S. (2015). “Digital Repository Universitas Jember Digital Repository Universitas Jember.” Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Gibson, C. (1995). Title: Critical thinking: implications for instruction. Rq, 35(1), 1–7.

Hidayat, K. (2021). Pengaruh Konstanta Pegas (k) dan Konstanta Redaman (c) Pada Pergerakan Landing Gear Pesawat Terbang Berawak Menggunakan Simulasi Numerik.

Kallio, E. (1998). Training of Students’ Scientific Reasoning Skills. Jyv Askyla Studies In Education, Psychology And Social Research, 139.

Lee, C. L., Chen, Y. T., Chung, L. L., & Wang, Y. P. (2006). Optimal design theories and applications of tuned mass dampers. Engineering Structures, 28(1), 43–53. https://doi.org/10.1016/j.engstruct.2005.06.023

Moore, J. C., & Rubbo, L. J. (2012). Scientific reasoning abilities of nonscience majors in physics-based courses. Physical Review Special Topics - Physics Education Research, 8(1), 1–8. https://doi.org/10.1103/PhysRevSTPER.8.010106

Ningsi, G. P., Nendi, F., & Sugiarti, L. (2020). An application of the finite difference method for solving the mass spring system equation. Jurnal Matematika, Statistika Dan Komputasi, 16(3), 404. https://doi.org/10.20956/jmsk.v16i3.9574

Norton, M. S. (2009). Numerov ’ s Method for Approximating Solutions to Poisson ’ s Equation. 0(2), 1–17.

Permata Sari, F., Nikmah, S., Kuswanto, H., & Wardani, R. (2020). Development of physics comic based on local wisdom: Hopscotch (engklek) game android-assisted to improve mathematical representation ability and creative thinking of high school students. Revista Mexicana de Fisica E, 17(2), 255–262. https://doi.org/10.31349/REVMEXFISE.17.255

Pratidhina, E., Rizky Yuliani, F., & Sunu Brams Dwandaru, W. (2020). Relating simple harmonic motion and uniform circular motion with tracker. Revista Mexicana de Fisica E, 17(2), 141–145. https://doi.org/10.31349/REVMEXFISE.17.141

Putri, O. D., Nevrita, N., & Hindrasti, N. E. K. (2019). Pengembangan Instrumen Penilaian Keterampilan Berpikir Kritis Siswa Sma Pada Materi Sistem Pencernaan. BIOEDUKASI (Jurnal Pendidikan Biologi), 10(1), 14. https://doi.org/10.24127/bioedukasi.v10i1.2004

Raditiya, M., & Azwar, A. (2021). Komputasi Numerik Persamaan Dinamika Nonlinier Untuk Pendulum Elastik dengan Massa Berubah. 9(2), 117–124.

Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal (Iran), 6(8), 1622–1651. https://doi.org/10.28991/cej-2020-03091571

Rani, S. A., Ariswan, A., Supardi, S., Putranta, H., Purnama, A. Y., & Dwandaru, W. S. B. (2022). Crystalline Band Energy Simulation as a Materials and Programming Project during the Covid-19 Pandemic. TEM Journal, 11(2), 981–987. https://doi.org/10.18421/TEM112-62

Ritdamaya, D., & Suhandi, A. (2016). Konstruksi Instrumen Tes Keterampilan Berpikir Kritis Terkait Materi Suhu dan Kalor. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 02(2), 87–96. https://doi.org/10.21009/1.02212

Santín, M. F., & Torruella, M. F. (2017). Reggio emilia: An essential tool to develop critical thinking in early childhood. Journal of New Approaches in Educational Research, 6(1), 50–56. https://doi.org/10.7821/naer.2017.1.207

Shirkhani, S., & Fahim, M. (2011). Enhancing critical thinking in foreign language learners. Procedia - Social and Behavioral Sciences, 29, 111–115. https://doi.org/10.1016/j.sbspro.2011.11.214

Sipil, J. T. (2020). 7 . Optimalisasi Parameter TMD. 6(8), 1637–1651.

Sunday, J., James, A. A., Odekunle, M. R., & Adesanya, A. O. (2016). Solutions to Free Undamped and Free Damped Motion Problems in Mass-Spring Systems. American Journal of Computational and Applied Mathematics, 6(2), 82–91. https://doi.org/10.5923/j.ajcam.20160602.08

Thomas, T. (2011). Developing first year students’ critical thinking skills. Asian Social Science, 7(4), 26–33. https://doi.org/10.5539/ass.v7n4p26

Triana, C. A., & Fajardo, F. (2013). Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter. Revista Brasileira de Ensino de Fisica, 35(4). https://doi.org/10.1590/s1806-11172013000400005

Vaughan, N., Dubey, V. N., Wee, M. Y. K., & Isaacs, R. (2015). Haptic feedback from human tissues of various stiffness and homogeneity. Advances in Robotics Research, 1(3), 215–237. https://doi.org/http://dx.doi.org/10.12989/arr.2014.1.3.215

Wang, W., Li, Y., Lin, C., & Yang, S. (2020). Mass-Spring-Damping Theory Based Equivalent Mechanical Model for Cylindrical Lithium-ion Batteries under Mechanical Abuse. Chinese Journal of Mechanical Engineering (English Edition), 33(1). https://doi.org/10.1186/s10033-020-00440-8

Yuliantaningrum, L., Sunarti, T., Fisika, J., & Surabaya, U. N. (2020). IPF : Inovasi Pendidikan Fisika ISSN : 2302-4496 IPF : Inovasi Pendidikan Fisika Lina Yuliantaningrum , Titin Sunarti. 09(02), 76–82.

Zhu, J. (2019). The effect of damping coefficient, spring coefficient, and mass ratio on the power extraction performance of a semiactive flapping wing. International Journal of Aerospace Engineering, 2019. https://doi.org/10.1155/2019/5151808

Zulkipli, Z. A., Mohd Yusof, M. M., Ibrahim, N., & Dalim, S. F. (2020). Identifying Scientific Reasoning Skills of Science Education Students. Asian Journal of University Education, 16(3), 275–280. https://doi.org/10.24191/ajue.v16i3.10311

2024-07-01

## How to Cite

[1]
S. Raharjo, E. Istiyono, S. B. . Wahyono, A. Ariswan, supardi supardi, and A. Y. Purnama, “Modeling damped spring vibration using python to train students’ critical thinking and scientific reasoning”, Rev. Mex. Fis. E, vol. 21, no. 2 Jul-Dec, pp. 020205 1–, Jul. 2024.

## Section

02 Education in Physics