Non conventional coherent states

Authors

  • A. Plastino Universidad Nacional de La Plata
  • G. L. Ferri Universidad Nacional de La Pampa

DOI:

https://doi.org/10.31349/RevMexFis.22.010214

Keywords:

Harmonic oscillator; Glauber states; exact analytic forms; excited states

Abstract

We analyze properties of excited states of a special Hamiltonian H, endowed with a displaced quadratic potential V such that its ground state is a HO-Glauber coherent state of amplitude α. For large enough real α, we show that the first excited state of this Hamiltonian is also a coherent state of minimum uncertainty.

Author Biography

A. Plastino, Universidad Nacional de La Plata

Emeritud Professor

Physics Department

References

G. S. Agarwal and K. Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A 43 (1991) 492, https://doi.org/10.1103/PhysRevA.43.492

R. J. Glauber, Phys. Rev. Lett. 10 (1963) 84, https://doi.org/10.1103/PhysRevLett.10.84

R. J. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev. 130 (1963) 2529, https://doi.org/10.1103/PhysRev.130.2529

R. J. Glauber, Phys. Rev. 131 (1963) 493

R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131 (1963) 2766, https://doi.org/10.1103/PhysRev.131.2766

G. L. Ferri et al., New mathematics for the nonadditive Tsallis’ scenario, Int. J. Mod. Phys. B 31 (2017) 1750151, https://doi.org/10.1142/S021797921750151X

I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 1965)

A. Plastino and M. Rocca, Teaching strategy for introducing beginners to Coherent States, Rev. Mex. Fis. E 65 (2019) 191, https://doi.org/10.31349/RevMexFisE.65.191

E. Schrödinger, Der stetige Übergang von der Mikrozur Makromechanik, Naturwissenschaften 14 (1926) 664, https://doi.org/10.1007/BF01507634

V. V. Dodonov, V. I. Mankov, Theory of Nonclassical States of Light (Taylor and Francis, London, 2003); V V Dodonovy, Y. A. Korennoyy, V. I. Mankov, Y. A. Moukhin, Quantum Semiclass. Opt. 8 (1996) 413

A. A. Dehghani, B. Mojaveri, and A. A. Alenabi, Excitation and depression of coherent state of the simple harmonic oscillator, J. Math. Phys. 60 (2019) 083501, https://doi.org/10.1063/1.5055915

Downloads

Published

2025-01-01

How to Cite

[1]
A. Plastino and G. L. Ferri, “Non conventional coherent states”, Rev. Mex. Fis. E, vol. 22, no. 1 Jan-Jun, pp. 010214 1–, Jan. 2025.