Ley de enfriamiento de Newton con temperatura variable
DOI:
https://doi.org/10.31349/RevMexFis.22.010218Keywords:
Newton’s cooling law; modelling; differential equationsAbstract
En este trabajo se presenta un estudio teórico-experimental sobre la ley de enfriamiento de Newton, con temperatura variable. En el estudio teórico se resolvió una ecuación diferencial ordinaria lineal la cual permite calcular la temperatura de un objeto a lo largo de un periodo de tiempo. Para la sección experimental del estudio se realizaron dos modelos experimentales, donde se uso un modelo senoidal para la temperatura ambiente y se comparo con la respuesta teórica, después de 22 y 52 horas respectivamente. En el estudio se compararon los resultados experimentales con las soluciones de las ecuaciones diferenciales, en diferentes lapsos de tiempo. El objetivo del presente, fomenta la reflexión por parte de los estudiantes y docentes, dando libre camino, a la modificación del modelo de temperatura y otros análogos para el estudio de ecuaciones diferenciales ordinarias y sus aplicaciones.
This work presents a theoretical-experimental study on the applicability of Newton’s cooling law in prolonged time periods, considering a sinusoidal variable ambient temperature. In the theoretical study, a linear ordinary differential equation that describes the heat transfer between an object and its environment was solved. The solution of this equation allows calculating the object’s temperature over time, considering a variable ambient temperature. In the experimental part, two experimental models were built to evaluate Newton’s cooling law. A sinusoidal model was used to represent the ambient temperature, which represents a non-traditional initial condition. The experimental results were compared with the theoretical solution obtained in the first part of the study, considering 22 and 52 hours. The objective of this work is to evaluate the validity of Newton’s cooling law in situations that have not been explored in depth previously. The incorporation of a sinusoidal temperature as an initial condition provides a new perspective on the study of this phenomenon and opens the door to the modification of temperature models and other analogous models in the field of ordinary differential equations and their applications.
References
J. Escalante-Martínez, Análisis del coeficiente de amortiguamiento viscoso en un sistema masa-resorte-amortiguador utilizando PPLANE y GEOGEBRA, Rev. Mex. Fis. E, 62 (2016) 66
R. Rodríguez y S. Quiroz, El rol de la experimentación en la modelación matemática. Educación Matemática 28 (2016) 91- 110, https://doi.org/10.24844/EM2803.04
E. Lozada, C. Guerrero, A. Coronel, y R. Medina, Classroom Methodologies for teaching and learning differential equations: A systematic literature review and biblioimetric analysis, Mathematics 9 (2021) 745, https://doi.org/10.3390/math9070745
G. Ortigoza and R. I. Ponce de la Cruz Herrera, Resolviendo ecuaciones diferenciales ordinarias con Symbolic Math ToolboxTM (Matlab) y SymPy (Python), Rev. Mex. Fis. E 20 (2023) 020209, https://doi.org/10.31349/RevMexFis.20.020209
E. Pratidhina, F. R. Yuliani y W. S. B. Dwandaru, Relating simple harmonic motion and uniform circular motion with Tracker, Rev. Mex. Fis. E 17 (2020) 141, https://doi.org/10.31349/RevMexFisE.17.141
F. Zeynivandnezhad, Z. Ismail Z. y Y. M. Yusof, Teaching mathematical structures in differential equations using a computer algebra system to engineering students, IEEE 7th Inter-national Conference on Engineering Education (ICEED), (Kanazawa, Japan, 2015), pp. 10-15, https://doi.org/10.1109/ICEED.2015.7451483
M. Artigue, The Future of Teaching and Learning Mathematics with Digital Technologies. In New ICMI Study Series (13, pp. 463-475). Springer. 2007. https://doi.org/10.1007/978-1-4419-0146-0_23
C. García Castiblanco, Gestión de conocimiento desde el aprendizaje basado en realidades apoyado en la simulación: Casos de Aplicación, Revista internacional de aprendizaje en ciencia, matemáticas y tecnología 3 (2016) 55
F. Donado et al., Estudio experimental de la viscosidad de un fluido magneto-reológico a base de magnetita mineral, Rev. Mex. Fis E. 53 (2007) 31
R. M. Zbiek et al., Research on Technology in Mathematics Education. In Second Handbook of Research on Mathematics Teaching and Learning (pp. 1169-1207), (2007)
W.C. Xie, Differential Equations for Engineers. (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511761683
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pablo Moreira, Othon Ortega
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.