pymcabc: A particle physics toy toolbox for the ABC model
DOI:
https://doi.org/10.31349/RevMexFisE.22.010207Keywords:
Monte CarloAbstract
We present the pymcabc software, which is a Monte Carlo event generator for the ABC toy model. The ABC model consists of three scalar particles of arbitrary masses. The only interaction among these particles occurs when all three of them are present together. The pymcabc software can calculate all the leading-order cross-sections as well as decay widths within the ABC model and it can simulate all the scattering processes within the ABC model. Moreover, it simulates the decays associated with the heavy-particle final state, leading to a 2 → 3 or a 2 → 4 type final states within the ABC model. We also apply toy detector effects to simulate the detector response of a toy tracker for three-momentum measurements and a toy calorimeter for energy measurements. Using the results of the pymcabc software, we also illustrate some well-known physics analyses techniques such as the analysis of the lineshape of a heavy propagator and the recoil mass reconstruction technique.
References
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energ. Physics 2014 (2014) 79, https://doi.org/10.1007/jhep07(2014)079
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159, https://doi.org/10.1016/j.cpc.2015.01.024
D. J. Griffiths, Introduction to elementary particles; 2nd rev. version, Physics textbook (Wiley, New York, NY, 2008), https://cds.cern.ch/record/111880
I. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics: A Practical Introduction, Volume 1 : From Relativistic Quantum Mechanics to QED, Fourth Edition (Taylor & Francis, 2013), https://doi.org/10.1201/b13717
P. Kraus and D. J. Griffiths, Renormalization of a model quantum field theory, Am. J. Phys. 60 (1992) 1013, https://doi.org/10.1119/1.16980
A. Papaefstathiou, How-to: write a parton-level Monte Carlo particle physics event generator, Eur. Phys. J. Plus 135 (2020) 497, https://doi.org/10.1140/epjp/s13360-020-00499-1
R. L. Workman et al., Review of Particle Physics, Progr. Theor. Exp. Phys. 2022 (2022) 083C01, https://doi.org/10.1093/ptep/ptac097
R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81, https://doi.org/10.1016/S0168-9002(97)00048-X
F. E. James, Monte Carlo phase space, Cern Academic Training Lecture (Cern, Geneva, 1968), https://doi.org/10.5170/CERN-1968-015
P. Artoisenet et al., Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 2013 (2013) 015, https://doi.org/10.1007/JHEP03(2013)015
C. R. Harris et al., Array programming with NumPy, Nature 585 (2020) 357, https://doi.org/10.1038/s41586-020-2649-2
J. Pivarski et al., Uproot (2024), https://doi.org/10.5281/zenodo.10699405
J. D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007) 90, https://doi.org/10.1109/MCSE.2007.55
T. pandas development team, pandas-dev/pandas: Pandas (2020), https://doi.org/10.5281/zenodo.3509134
C. Degrande et al., UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201, https://doi.org/10.1016/j.cpc.2012.01.022
A. Alloul et al., FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250, https://doi.org/10.1016/j.cpc.2014.04.012
A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431, https://doi.org/10.1016/j.cpc.2008.10.012
A. Desai, UFO Files for the Toy ABC Model (2023), https://doi.org/10.5281/zenodo.8163866
M. Galli, E. Tejedor, and S.Wunsch, A New PyROOT: Modern, Interoperable and More Pythonic, EPJ Web Conf. 245 (2020) 06004, https://doi.org/10.1051/epjconf/202024506004
R. Aaij et al., Measurement of the B 0 s → µ +µ − branching fraction and effective lifetime and search for B 0 → µ +µ − decays, Phys. Rev. Lett. 118 (2017) 191801, https://doi.org/10.1103/PhysRevLett.118.191801
G. Bernardi et al., The Future Circular Collider: a Summary for the US 2021 Snowmass Process (2022), https://doi.org/10.48550/arXiv.2203.06520
A. Desai, UFO Files for the Toy ABC+D Model (2023), https://doi.org/10.5281/zenodo.8163874
A. Desai, An introduction to semi-automated matrix element computation in particle physics (2023), https://doi.org/10.5281/zenodo.8331825
A. Desai, amanmdesai/pymcabc (2023), https://doi.org/10.5281/zenodo.7792881
M. H. Seymour and M. Marx, Monte Carlo Event Generators, In 69th Scottish Universities Summer School in Physics: LHC Physics (2013) pp. 287-319, https://doi.org/10.1007/978-3-319-05362-28
J. Pivarski, Uproot, Zenodo https://doi.org/10.5281/zenodo.8122179
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aman Desai
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.