La búsqueda de los componentes básicos de la materia, desde la campana de vidrio a la lámina de oro

Authors

  • J. P. Calderón Facultad de Ciencias, UNAM
  • A. Sánchez Facultad de Ciencias, UNAM
  • A. V. Porta Facultad de Ciencias, UNAM
  • Susana Orozco Facultad de Ciencias, UNAM

DOI:

https://doi.org/10.31349/RevMexFis.22.020301

Keywords:

history of chemistry; cathode rays; X-rays; discovery of the electron; structure of matter

Abstract

In this work, we show how the study of electrical discharges through gases led to the discovery of the matter constituents. We present a review of fundamental experiments to the discovery of the blocks that constitute all materials. Our narrative begins with the stoichiometry experiments of Antoine Lavoisier, who observing chemical reactions in controlled environments within a glass bell, managed to highlight the importance of precise measurements and to know some fundamental concepts involved in chemical reactions. Our presentation of the discoveries is not historical, instead is an essay of the hypotheses behind the experiments, some specific details of them, a discussion of the concepts involved, and how their results contributed to the modification of the ideas established. The essay is finished with the ideas of Ernest Rutherford about the atomic structure, which were conceived from the results of the experiments with gold sheets and alpha particles.

 

En este trabajo mostramos como el estudio de las descargas eléctricas a través de los gases condujo al descubrimiento de los constituyentes de la materia. Presentamos una revisión de experimentos fundamentales para el descubrimiento de los bloques que constituyen todos los materiales. La narración comienza con los experimentos de Lavoisier, quien al realizar reacciones químicas en ambientes controlados dentro de campanas de vidrio logró destacar la importancia de las medidas precisas y conocer algunos conceptos fundamentales involucrados en las reacciones químicas. Nuestra presentación de los descubrimientos no es histórica; sino que es un relato de las hipótesis que motivaron los experimentos, algunos detalles específicos de los mismos, una discusión de los conceptos involucrados y la forma en la que sus resultados contribuyeron a la modificación de las ideas establecidas. Concluimos con las ideas de Rutherford sobre la estructura de los átomos y sus experimentos con partículas alfa y láminas de oro.

References

M. Shamos ed., Great Experiments in Physics, Firsthand Accounts from Galileo to Einstein (Dover, New York, 1987)

G. Trigg, Landmark Experiments in twentieth Century Physics (Dover, New York, 1995)

Y. Ne’eman and K. Yoram, Particles hunters (University Press, Cambridge 2006)

E. Ley Koo, El Electron Centenario (Fondo de Cultura Economica, SEP, Conacyt, Mexico, 1999)

H. G. Riveros, Analisis del experimento de Millikan Rev. Mex. Fis. E 17 (2020) 236; M. A. Rodriguez and M. Niaz, A Reconstruction of Structure of the Atom and Its Implications for General Physics Textbooks: A History and Philosophy of Science Perspective, J. Sci. Educ. Technol., 13 (2004) 409

A. Clericuzio, Spirit, Chemical Principles and Atoms in France in the First Half of the Seventeenth Century. In International Archives of the History of Ideas, vol 171 (Springer, Dordrecht, 2000) pp. 35-74

A. Clericuzio, “Sooty Empiricks” and Natural Philosophers: The Status of Chemistry in the Seventeenth Century, Sci. Context 23 (2010) 329

U. Klein, Theory and Concepts: transformation of chemical ideas in the eighteenth century, In A Cultural history of chemistry in the eighteenth century, vol. 4, Matthew Daniel Eddy and Ursula Klein eds. (Bloomsbury Academic, London, 2021), pp. 23-44

R. Hendry, Lavoisier and Mendeleev on the elements, Found. Chem. (2005) 31

S. Sambursky, The Equivalence of Mass and Energy. An Anticipation by Mendeleev, Isis, 60 (1969) 104

G. Holton and B. Stephen, Physics, the Human Adventure: From Copernicus to Einstein and Beyond (Rutgers University Press, New Jersey, 2001)

J. Dalton, A new system of chemical philosophy (Henderson and Spalding, London, 1808)

J. Gay Lussac, Memoire sur la combinaison des substances gazeuses, les unes avec les autres, Memoires de la Societe de physique et de chimie de la Societe dA Arcueil, 2 (1809) 207

A. Avogadro, D’une maniere de determiner les masses relatives des molecules el ementaires des corps, et les proportions selon lesquelles elles etrent dans ses combinaisons, J. Phys. Chim. Hist. Nat. 73 (1811) 58

S. Cannizzaro, Sunto di un corso di filosofıa chimica (Universita di Genova, Genova 1858)

M. Meyer, An element of order, Distillations, Science History Institute (2013) https://www.sciencehistory.org/distillations/magazine/an-element-of-order

P. Stewart, Mendeleev’s predictions: success and failure, Found. Chem. (2018) 1

G. Kirchhoff and R. Bunsen, Chemical Analysis by Observation of Spectra, Annalen der Physik und der Chemie (Poggendorff) 110 (1860) 162

W. Schrenk, Historical Development of flame excitation sources for analytical spectroscopy, Appl. Spectrosc. 40 (1986) 19

J. Israelachvili and Ma. Ruths, Brief History of Intermolecular and Intersurface Forces in Complex Fluid Systems, Langmuir 29 (2013) 9605

G. N. Lewis, The atom and the molecule, J. Am. Chem. Soc. 38 (1916) 762

H. T Bernstein, J. Clerk Maxwell on the History of the Kinetic Theory of Gases, 1871, Isis 54 (1963) 206

W. Crookes, On Radiant Matter (The British association for advancement of science at Sheffield, London 1879)

A. Eger and H. Ehlhardt, On the origin of products: the evolution of product innovation and design (Cambridge University Press, Cambridge 2018)

P. Lenard, On Cathode Rays, Nobel Lectures (1906) 105

W. Roentgen, On a New Kind of Rays (translated by Arthur Stanton), Nature 53 (1896) 254

A. Hessenbruch, A brief history of X-rays, Endeavour 26 (2002) 137

A. Assmus, Early History of X Rays, Beam Line 25 (1995) 10

H. Becquerel, On radioactivity a new property of matter, Nobel Lectures (1903) 52

P. Radvanyi and J. Villain, The discovery of radioactivity, C. R. Phys. 18 (2017) 544

J. P. Adloff, The laboratory notebooks of Pierre and Marie Curie and the discovery of polonium and radium, Czech. J. Phys. 49/S1 (1999) 15

P. Radvany, The discussion between P. Curie and E. Rutherford, Eur. Phys. J. H (2013) 1; H. Kragh, Rutherford, Radioactivity and the atomic nucleus, https://arxiv.org/abs/1202.0954 (2012) 1

G. Stoney, Of the “Electron”, or Atom of Electricity, Philos. Mag. Series 5, 38 (1894) 418

A. Arons, Evolucion de los conceptos de la Fısica (Trillas, Mexico, 1970)

R. Millikan, On the Elementary Electric Charge and the Avogadro Constant, Phys. Rev. 2 (1913) 109

B. C. Reed, A Short History of Nuclear Physics to the Mid1930s. In The History and Science of the Manhattan Project. Undergraduate Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2014) pp. 15-70

H. Geiger and E. Marsden, On a diffuse reflection of the α particles, Proc. R. Soc. London A, 82 (1909) 495

Ernest Rutherford, The scattering of α and β particles by matter and the structure of the atom, Philos. Mag. Series 6 21:125, (1911) 669

E. Rutherford and J. Chadwick, Scattering of alpha-particles by Atomic Nuclei and the law of force, Philos. Mag. S 1 50 (1925) 889

E. Rutherford, Bakerian lecture: Nuclear constitution of atoms, Proc. R. Soc. London A 97 (1920) 374

Downloads

Published

2025-01-01

How to Cite

[1]
J. P. Calderón, A. Sánchez, A. V. Porta, and S. Orozco, “La búsqueda de los componentes básicos de la materia, desde la campana de vidrio a la lámina de oro”, Rev. Mex. Fis. E, vol. 22, no. 1 Jan-Jun, pp. 010301 1–, Jan. 2025.