Curso introductorio de cristales líquidos I: fases y propiedades estructurales

Authors

  • H. Híjar Universidad La Salle México

DOI:

https://doi.org/10.31349/RevMexFis.22.020217

Keywords:

Soft Matter, Anisotropy, Self-assembly, Phase Transitions, Order Parameters, Tensor Algebra

Abstract

Los cristales líquidos son el prototipo de la llamada materia condensada suave. En términos simples, son “líquidos con estructura” que históricamente han recibido mucho interés tanto por ser fuente de nuevos conceptos y conocimientos en Física, como por tener aplicaciones electroópticas importantes, e. g. en las pantallas de computadoras portátiles y teléfonos celulares. Más recientemente, se ha descubierto que los cristales líquidos podrían aplicarse en la fabricación de metamateriales y en biomedicina, donde son potencialmente útiles en la identificación de tejidos, la repartición controlada de fármacos y la detección de bacterias y virus. No obstante, en México, los cursos sobre cristales líquidos se incluyen en muy pocos programas universitarios de Física y en la mayoría de los casos son optativos. Por ello, es escasa la literatura en español para la enseñanza sobre cristales líquidos. En este artículo discutiremos sobre la Física elemental de los cristales líquidos y las herramientas matemáticas que permiten analizarlos. Principalmente, explicaremos cómo caracterizar analíticamente la simetría y el orden de los cristales líquidos nemáticos uniaxiales estáticos, la fase de cristal líquido más sencilla de todas. Conduciremos esta explicación en términos básicos, apropiados para estudiantes de ciencias o ingenierías a un nivel intermedio de licenciatura, con conocimientos de álgebra lineal y cálculo vectorial, que deseen acercarse por primera vez a este tema. Nuestro objetivo es objetivo es apoyar a la comunidad científica mexicana en la formación de recursos humanos en este campo.

 

Liquid crystals are the prototype of the so-called Soft Condensed Matter. In simple terms, they are “structured liquids” that historically have received a lot of interest because they help to generate new concepts and knowledge in physics, and possess important electro–optical applications, e.g., in displays of mobile computers and telephones. More recently, it has been discovered that liquid crystals could be applied in the fabrication of metamaterials and in biomedicine where they are potentially useful for tissue identification, controlled drug delivery, and detection of bacteria and viruses. However, in Mexico, liquid crystals courses are included only in a few undergraduate programs on physics, being elective in most of the cases. Therefore, literature for teaching about liquid crystals in Spanish is scarce. In this paper we will discuss about the elementary physics of liquid crystals and the mathematical tools that permit us to analyze them. We will explain, mainly, how to analytically characterize the symmetry and order of static uniaxial nematic liquid crystals, the simplest of all liquid crystal phases. We will conduct this explanation in basic terms, suitable for science and engineering students at intermediate undergraduate level, with knowledge about linear algebra and vector calculus, willing to approach to this subject for the first time. Our goal is to support the Mexican scientific community in preparing human resources in this field.

References

L. Hirst, Fundamentals of Soft Matter Science (CRC Press, Boca Raton, 2012).

P. Palffy-Muhoray, The diverse world of liquid crystals, Phys. Today 60 (2007) 54, 10.1063/1.2784685

P. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

L. M. Blinov, Structure and Properties of Liquid Crystals (Springer, Dordrecht, 2011).

T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, CRYSTALS THAT FLOW. Classic papers from the history of liquid crystals

(Taylor & Francis, New York, 2004).

S. T. Lagerwall, On some important chapters in the history of liquid crystals, Liq. Cryst. 40 (2013) 1698, 10.1080/02678292.2013.831134

D. Dunmur and T. Sluckin, Soap, science, and flat-screen TVs: a history of liquid crystals (Oxford University Press, Oxford, 2014).

M. Mitov, Liquid-Crystal Science from 1888 to 1922: Building a Revolution, ChemPhysChem 15 (2014) 1245, 10.1002/cphc.201301064

F. Reinitzer, Beiträge zur Kenntnisse des Cholesterins (Contribuciones al conocimiento del colesterol), Monatshefte für Chemie (Wien) 9 (1888) 42123. C. W. Oseen, Die anisotropen Flüssigkeiten: Tatsachen u. Theorien (Los fluidos anisotrópicos: hechos y teorías), Fortschritte der Chemie, Physik und physikalischen Chemie (Gebrüder Borntraeger, Berlin, 1929).

O. Lehmann, Ueber krystallinischer Flüssigkeiten (Sobre líquidos cristalinos), Wiedemann’s Annalen für Physik und Chemie

(1890) 52524. H. Zocher, The Effect of a Magnetic Field on the Nematic State, Trans. Faraday Soc. 29 (1933) 945, 10.1039/TF9332900945

O. Lehmann, Die Struktur krystallinischer Flüssigkeiten (La estructura de los líquidos cristalinos), Zeitschrift für physikalische Chemie 5 (1890) 42725. F. C. Frank, I. Liquid crystals. On the theory of liquid crystals, Discuss. Faraday Soc. 25 (1958) 19, 10.1039/DF9582500019

O. Lehmann, Flüssige Kristalle sowie Plastizität von Kristallen im Allgemeinen, molekulare Umlagerungen und Aggregatzutandänderungen (Cristales líquidos así como plasticidad en cristales en general, reacomodos moleculares y cambios en

el estado de agregación) (Wilhelm Engelmann, Leipzig, 1904).

W. Maier and A. Saupe, Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil I. (Una

teoría estadística molecular de la fase líquido-cristalina nemática. Parte I.), Z. Naturforschg. 14a (1959) 882

L. Gattermann and A. Ritschke, Ueber Azoxyphenoläther (Sobre el Azoxifenol éter), Berichte der Deutschen Chemischen Gesellschaft 23 (1890) 1738

D. Vorländer, Ueber krystallinisch-flüssige Substanzen (Sobre las substancias líquido-cristalinas), Berichte der deutschen chemischen Gesellschaft 39 (1906) 803

D. Vorländer, Kristallinisch-flüssige substanzen, vol. 12 (Enke, Stuttgart, 1908).

G. Tammann, Ueber die sogenannten flüssigen Krystalle,

Annalen der Physik 309 (1901) 524, 10.1002/andp.1901309030730. G. M. J. Mo and M. Nagaraj, Liquid crystal nanoparticles for commercial drug delivery, Liq. Cryst. Rev. 5 (2017) 69, 10.1080/21680396.2017.1361874

G. Tammann, Ueber die sogenannten flüssigen Krystalle II (Sobre los así llamados cristales líquidos II), Annalen der Physik

(1902) 103

G. Friedel and F. Grandjean, Observations sur les “flüssige Kristalle” de O. M. Lehmann (Observaciones sobre los “flüssige Kristalle” de O. M. Lehmann), Bulletin de la Société Française de Minéralogie 33 (1910) 192

R. Schenck, Kristalline Flüssigkeiten und flüssige Kristalle (Líquidos cristalinos y cristales líquidos) (Wilhelm Engelmann, Leipzig, 1904).

C. Mauguin, Cristaux liquides en lumière convergente (Cristales líquidos en luz convergente), CR Acad. Sci. 151 (1910) 886

C. Mauguin, Sur les cristaux liquides de Lehmann (Sobre los cristales líquidos de Lehmann), Bulletin de la Société Française de Minéralogie 34 (1911) 71

C. Mauguin, Orientation des cristaux liquides par le champ magnétique (Orientación de los cristales líquidos por un campo magnético), CR Acad. Sci. 152 (1911) 1680

C. W. Oseen, Die anisotropen Flüssigkeiten: Tatsachen u. Theorien (Los fluidos anisotrópicos: hechos y teorías), Fortschritte der Chemie, Physik und physikalischen Chemie (Gebrüder Borntraeger, Berlin, 1929).

H. Zocher, The Effect of a Magnetic Field on the Nematic State, Trans. Faraday Soc. 29 (1933) 945, 10.1039/TF9332900945

F. C. Frank, I. Liquid crystals. On the theory of liquid crystals, Discuss. Faraday Soc. 25 (1958) 19, 10.1039/DF9582500019

W. Maier and A. Saupe, Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil I. (Una teoría estadística molecular de la fase líquido-cristalina nemática. Parte I.), Z. Naturforschg. 14a (1959) 882

J.-F. Joanny and M. Cates, Pierre-Gilles de Gennes. 24 October 1932–18 May 2007, Biogr. Mem. Fellows R. Soc. 66 (2019) 143, 10.1098/rsbm.2018.0033

T. Geelhaar, K. Griesar, and B. Reckmann, 125 Years of Liquid Crystals–A Scientific Revolution in the Home, Angew. Chem. Int. Ed. 52 (2013) 8798, 10.1002/anie.201301457

D.-H. Kim, et al., Lyotropic liquid crystal systems in drug delivery: a review, Journal of Pharmaceutical Investigation 45 (2015) 1, 10.1007/s40005-014-0165-9

G. M. J. Mo and M. Nagaraj, Liquid crystal nanoparticles for commercial drug delivery, Liq. Cryst. Rev. 5 (2017) 69, 10.1080/21680396.2017.1361874

J. F. Algorri, et al., Recent Advances in Adaptive Liquid Crystal Lenses, Crystals 9 (2019), 10.3390/cryst9050272

R. S. Zola, et al., Dynamic Control of Light Direction Enabled by Stimuli-Responsive Liquid Crystal Gratings, Adv. Mater. 31

(2019) 1806172, 10.1002/adma.201806172

H. K. Bisoyi and Q. Li, Liquid crystals: versatile self-organized smart soft materials, Chem. Rev. 122 (2021) 4887, 10.1021/

acs.chemrev.1c00761

J. Mysliwiec, et al., Liquid crystal lasers: the last decade and the future, Nanophotonics 10 (2021) 2309, doi:10.1515/ nanoph-2021-0096

K. Salikolimi, A. A. Sudhakar, and Y. Ishida, Functional Ionic Liquid Crystals, Langmuir 36 (2020) 11702, 10.1021/acs.langmuir.0c01935

J. Kloos, et al., Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations, J. Membr. Sci. 620 (2021) 118849, 10.1016/j. Memsci.2020.118849

C. Peng, et al., Command of active matter by topological defects and patterns, Science 354 (2016) 882, 10.1126/science.aah6936

A. Saha, et al., Irreversible visual sensing of humidity using a cholesteric liquid crystal, Chem. Commun. 48 (2012) 4579,

1039/C2CC16934G

H. Chi, et al., Surface anchoring controls orientation of a microswimmer in nematic liquid crystal, Commun. Phys. 3 (2020)

, 10.1038/s42005-020-00432-z56. H. Coles and S. Morris, Liquid-crystal lasers, Nat. Photonics 4 (2010) 676, 10.1038/nphoton.2010.184

J. J. Vallooran, et al., Lipidic Cubic Phases as a Versatile Platform for the Rapid Detection of Biomarkers, Viruses, Bacteria, and Parasites, Adv. Funct. Mater. 26 (2016) 181, 10.1002/adfm.201503428

H. Wang, et al., Liquid crystal biosensors: Principles, structure and applications, Biosensors 12 (2022) 639, 10.3390/bios12080639

K. Mehta, et al., Design and applications of light responsive liquid crystal polymer thin films, Appl. Phys. Rev. 7 (2020), 10.1063/5.0014619

I. Muševič, Liquid Crystal Colloids (Springer, Cham, 2017).

T. Wöhrle, et al., Discotic Liquid Crystas, Chem. Rev. 116 (2016) 1139, 10.1021/acs.chemrev.5b00190

M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics. An Intermediate Textbook, Seventh ed. (McGraw-Hill, New York, 1997).

M. De Broglie and E. Friedel, X-Ray Diffraction by Smectic Materials, Compt. Rend. 176 (1923) 738

J. P. F. Lagerwall and F. Giesselmann, Current Topics in Smectic Liquid Crystal Research, ChemPhysChem 7 (2006) 20, 10.1002/cphc.200500472

W. L. McMillan, X-Ray Scattering from Liquid Crystals. I. Cholesteryl Nonanoate and Myristate, Phys. Rev. A 6 (1972) 936, 10.1103/PhysRevA.6.936

P. K. Mukherjee and B. C. Khan, Nematic to smectic-A phase transition in mixture of liquid crystal and nonmesogenic impurities: existence of tricritical point, Liq. Cryst. 46 (2019) 1060, 10.1080/02678292.2018.1555722

V. A. Mallia and N. Tamaoki, Design of chiral dimesogens containing cholesteryl groups; formation of new molecular organi-

zations and their application to molecular photonics, Chem. Soc. Rev. 33 (2004) 76, 10.1039/B106617J

P. Oswald, Phase transitions and unwinding of cholesteric liquid crystals, Phase Transitions. Application to Liquid Crys-

tals, Organic Electronic and Optoelectronic Field (2006) 47

T. Matsui, Numerical Simulation of Lasing Dynamics in Choresteric Liquid Crystal Based on ADE-FDTD Method, In J. Awrejcewicz, ed., Numerical Simulations of Physical and Engineering Processes, chap. 9 (IntechOpen, Rijeka, 2011), 10.5772/24089.

S. Soni, et al., Liquid crystals and applications of chlosteric liquid crystal in laser, In International Journal of Modern Physics: Conference Series, vol. 22 (World Scientific, 2013) pp. 736–740.

C. R. Smith, D. R. Sabatino, and T. J. Praisner, Temperature sensing with thermochromic liquid crystals, Exp. in Fluids 30 (2001) 190, 10.1007/s003480000154

J. Stasiek, et al., Liquid crystal thermography and true-colour digital image processing, Opt. Laser Technol. 38 (2006) 243, 10.1016/j.optlastec.2005.06.028

A. Saha, et al., Irreversible visual sensing of humidity using a cholesteric liquid crystal, Chem. Commun. 48 (2012) 4579, 10.1039/C2CC16934G

H. Coles and S. Morris, Liquid-crystal lasers, Nat. Photonics 4 (2010) 676, 10.1038/nphoton.2010.184

M. Mitov, Cholesteric Liquid Crystals with a Broad Light Reflection Band, Adv. Mater. 24 (2012) 6260, https://doi.org/10.1002/adma.201202913

H. Oh, et al., Ultraviolet light screen using cholesteric liquid crystal capsules on the basis of selective reflection, RSC Adv. 11 (2021) 25471, 10.1039/D1RA03499E

M. Mitov, Cholesteric liquid crystals in living matter, Soft Matter 13 (2017) 4176, 10.1039/c7sm00384f

I. Dierking and A. Martins Figueiredo Neto, Novel Trends in Lyotropic Liquid Crystals, Crystals 10 (2020), 10.3390/cryst10070604

Introduction to Solid State Physics, Eighth ed. 62. Cell Membrane: Structure and Physical Properties, pp. 73–99 (Springer Netherlands, Dordrecht, 2008).

S. Jen, et al., Raman Scattering from a Nematic Liquid Crystal: Orientational Statistics, Phys. Rev. Lett. 31 (1973) 1552, 10.1103/PhysRevLett.31.1552

J. W. Emsley, et al., Orientational order in the nematic phase of 4-methoxy-4’-cyanobiphenyl: A deuterium NMR study, Chem. Phys. Lett. 104 (1984) 136, 10.1016/0009-2614(84) 80183-9

C. Denniston, Theory and simulation of objects in liquid crystals, ADV PHYS-X 5 (2020) 1806728, 10.1080/23746149.2020.1806728

S. Mandal and M. G. Mazza, Multiparticle collision dynamics for tensorial nematodynamics, Phys. Rev. E 99 (2019) 063319, 10.1103/PhysRevE.99.063319

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Twelfth ed. (Wiley, New Jersey, 2021).

R. Wangsness, Electromagnetic Fields (Wiley, New Jersey, 1986).

K. R. Symon, Mechanics, 3rd ed. (Addison-Wesley, Reading, 1971).

L. D. Landau, Collected papers, In D. T. Haar, ed., Collected papers, p. 193 (Gordon and Breach, New York, 1965).

P. G. De Gennes, Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics, Mol. Cryst. Liq. Cryst. 12 (1971) 193, 10.1080/15421407108082773

D. Andrienko, Introduction to liquid crystals, J. Mol. Liq. 267 (2018) 520, 10.1016/j.molliq.2018.01.175

S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets, Phys. Rev. E 62 (2000) 6694, 10.1103/PhysRevE.62.6694

A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory, European Journal of Applied Mathematics 21 (2010) 181, 10.1017/S0956792509990210

K. Binder, Statistical Theories of Phase Transitions, chap. 4, pp. 239–308 (John Wiley & Sons, Ltd, 2001), https://doi.org/10.1002/352760264X.ch4.

W. Iglesias, et al., Improving Liquid-Crystal-Based Biosensing in Aqueous Phases, ACS Appl. Mater. Interfaces 4 (2012) 6884, 10.1021/am301952f

I. W. Stewart, The static and dynamic continuum theory of liquid crystals: a mathematical introduction (CRC Press, Boca Raton, 2019).

I. Haller, Thermodynamic and static properties of liquid crystals, Prog. Solid State Ch. 10 (1975) 103, 10.1016/0079-6786(75)90008-4

H. Stark, Physics of colloidal dispersions in nematic liquid crystals, Phys. Rep. 351 (2001) 387, 10.1016/S0370-1573(00)00144-7

C. Blanc, et al., Dynamics of Nematic Liquid Crystal Disclinations: The Role of the Backflow, Phys. Rev. Lett. 95 (2005) 097802, 10.1103/PhysRevLett.95.097802

S. Mandal and M. G. Mazza, Multiparticle collision dynamics simulations of a squirmer in a nematic fluid, Eur. Phys J. E 44 (2021) 64, 10.1140/epje/s10189-021-00072-3

S. Hashemi, et al., Fractal nematic colloids, Nat. Commun. 8 (2017) 14026, 10.1038/ncomms14026

I. Muševič, Nematic Liquid-Crystal Colloids, Materials 11 (2018) 24, 10.3390/ma11010024

I. I. Smalyukh, Knots and other new topological effects in liquid crystals and colloids, Rep. Prog. Phys. 83 (2020) 106601, 10.1088/1361-6633/abaa39

Y. Han, A. Majumdar, and L. Zhang, A Reduced Study for Nematic Equilibria on Two-Dimensional Polygons, SIAM J. Appl. Math. 80 (2020) 1678, 10.1137/19M1293156

Y. Han, et al., Solution landscape of a reduced Landau–de Gennes model on a hexagon, Nonlinearity 34 (2021) 2048, 10.1088/1361-6544/abc5d4

H. Híjar, R. Halver, and G. Sutmann, Spontaneous Fluctuations in Mesoscopic Simulations of Nematic Liquid Crystals, Fluct. Noise Lett. 18 (2019) 1950011, 10.1142/S0219477519500111

D. Reyes-Arango, et al., Defects around nanocolloids in nematic solvents simulated by Multi-particle Collision Dynamics, Physica A 547 (2020) 123862, 10.1016/j.physa.2019. 123862

A. D. Gonzalez-Martinez, E. J. Sambriski, and J. A. Moreno-Razo, Beyond Bulk Gay-Berne fluids: An outlook on mesogenic mixtures with molecular dynamics simulations, Rev. Mex. Fís. 68 (2022)

J. P. Hernández-Ortiz, et al., Modeling flows of confined nematic liquid crystals, J. Chem. Phys. 134 (2011) 134905, 10.1063/1.3567098

Downloads

Published

2025-07-01

How to Cite

[1]
H. Híjar, “Curso introductorio de cristales líquidos I: fases y propiedades estructurales”, Rev. Mex. Fis. E, vol. 22, no. 2 Jul-Dec, pp. 020217 1–, Jul. 2025.