Teorías de gauge (norma) en los mercados financieros, una revisión histórica
DOI:
https://doi.org/10.31349/RevMexFis.22.010302Keywords:
Economy; gauge or gauge theoriesAbstract
In the present work we make a historical review of economic studies, in particular, of the financial market, in which the tools and concepts developed in the context of gauge or norm theories are used, which constitute the cornerstone of the development of the fundamental physics. This vision allows us to understand the financial market as a dielectric material that, through the rearrangement of charges, polarizes to self-regulate and balance when arbitrage opportunities arise.
En el presente trabajo hacemos una revisión histórica de estudios económicos, en particular, del mercado financiero, en los que se emplean las herramientas y conceptos desarrollados en el contexto de las teorías de gauge o de norma, que constituyen la piedra angular del desarrollo de la física fundamental. Esta visión permite entender al mercado financiero como un material dieléctrico que, mediante el reacomodo de cargas, se polariza para auto-regularse y equilibrarse cuando se presentan oportunidades de arbitraje.
References
L. Bachelier, Théorie de la spéculation, Phd thesis, Universidad de la Sorbona, Annales de l’ Ecole Normal Supérieure (1900).
A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322 (1905) 549, https://doi.org/10.1002/andp.19053220806
A. Chakraborti et al., Editorial: From Physics to Econophysics and Back: Methods and Insights, Front. Phys. 10 (2022), https://doi.org/10.3389/fphy.2022.969516
F. Halzen and A. D. Martin, Quarks & Leptons: An Introductory Course in modern Particle Physics (Wiley, 1984), ISBN:0- 471-88741-2
W. M. Saslow, An economic analogy to thermodynamics, Am. J. Phys. 67 (1999) 1239, https://doi.org/10.1119/1.19110
Y. Feng, A Thermodynamic Picture of Financial Market and Model Risk (2019). https://doi.org/10.48550/arXiv.1904.00151
M. Gligor and M. Ignat, Econophysics: a new field for statistical physics?, Interdiscip. Sci. Rev. 26 (2001) 183, https://doi.org/10.1179/030801801679449
H. Li et al., Thermodynamic Analysis of Financial Markets: Measuring Order Book Dynamics with Temperature and Entropy, Entropy 26 (2024) 24, https://doi.org/10.3390/e26010024
H. Quevedo and M. N. Quevedo, Statistical Thermodynamics of Economic Systems, J. Thermodyn. 2011 (2011) 676495, https://doi.org/10.1155/2011/676495
H. Li et al., An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics (2023). https://doi.org/10.48550/arXiv.2308.14235
H. Quevedo and M. N. Quevedo, Geometrothermodynamic approach in econophysics, Int. J. Geom. Methods Mod. Phys. 20 (2023) 2350057, https://doi.org/10.1142/S0219887823500573
P. Malaney, The Index Number Problem: A Differential Geometric Approach, Ph.D. thesis, Harvard University (1996)
K. Ilinski and G. Kalinin, Black-Scholes equation from Gauge Theory of Arbitrage (1997), https://doi.org/10.48550/arXiv.hep-th/9712034
D. Sornette, Gauge theory of Finance?, Int. J. Mod. Phys. C. 09 (1998) 505. https://doi.org/10.1142/S0129183198000406
K. N. Ilinski, Gauge Physics of Finance: simple introduction (1998), https://doi.org/10.48550/arXiv.cond-mat/9811197
K. Young, Foreign exchange market as a lattice gauge theory, Am. J. Phys. 67 (1999) 862, https://doi.org/10. 1119/1.19139
K. Ilinski, Gauge geometry of financial markets, J. Phys. A: Math. Gen. 33 (2000) L5. https://dx.doi.org/10.1088/0305-4470/33/1/102
V. Kholodnyi, Valuation and dynamic replication of contingent claims in the framework of the beliefs-preferences gauge symmetry, Eur. Phys. J. B 27 (2002) 229, https://doi.org/10.1140/epjb/e20020148
V. Kholodnyi, Beliefs-Preferences Gauge Symmetry and Dynamic Replication in a General Market Environment, Science Direct Working Paper (2001) No S1574-0358(04)70743-1
L. Smolin, Time and symmetry in models of economic markets, (2009) https://doi.org/10.48550/arXiv.0902.4274
S. E. Vázquez and S. Farinelli, Gauge invariance, geometry and arbitrage, (2009), https://doi.org/10.48550/arXiv.0908.3043
Y. Morisawa, Toward a Geometric Formulation of Triangular Arbitrage-An Introduction to Gauge Theory of Arbitrage-, Progr. Theor. Phys. Suppl. 179 (2009) 209, https://doi.org/10.1143/PTPS.179.209
A. Sokolov, T. Kieu, and A. Melatos, A note on the theory of fast money flow dynamics, Eur. Phys. J. B 76 (2010) 637, https://doi.org/10.1140/epjb/e2010-00223-2
K. Ilinski, Physics of Finance: Gauge Modelling in Non equilibrium Pricing. NY USA (Wiley, 2014)
B. Dupoyet, H. Fiebig, and D. Musgrove, Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets, Physica A Stat. Mech. Appl. 389 (2010) 107, https://doi.org/10.1016/j.physa.2009.09.002
S. Zhou and L. Xiao, An application of symmetry approach to finance: Gauge symmetry in finance, Symmetry 2 (2010) 1763, https://doi.org/10.3390/sym2041763
J. Maldacena, The symmetry and simplicity of the laws of physics and the Higgs boson, Eur. J. Phys. 37 (2015) 015802, https://dx.doi.org/10.1088/0143-0807/37/1/015802
S. Farinelli, Geometric arbitrage theory and market dynamics, Available at SSRN 1113292 (2015) https://dx.doi.org/10.2139/ssrn.1113292
G. Paolinelli and G. Arioli, A path integral based model for stocks and order dynamics, Physica A: Statistical Mechanics and its Applications 510 (2018) 387, https://doi.org/10.1016/j.physa.2018.07.007
G. Paolinelli and G. Arioli, A model for stocks dynamics based on a non-Gaussian path integral, Physica A: Statistical Mechanics and its Applications 517 (2019) 499, https://doi.org/10.1016/j.physa.2018.11.044
L. A. Ramos-Llanos and A. Raya, Oportunidades de arbitraje desde la perspectiva de teorías de norma, Tesis (2022), https://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/12210
N. D. Rodrigues, Application of gauge theory to finance: a systematic literature review, Master’s thesis, Universidade do Algarve (2019), PQDT-Global (2019), https://sapientia.ualg.pt/handle/10400.1/13893
C. J. Servin-Tomas, A. Raya, and J. López-Chacón, Física y Finanzas, Tesis (2023), https://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/16781
J. López-Chacón, A. Raya, and M. B. Flores-Romero, Teoría de Norma en el Mercado Financiero para el Arbitraje de Divisas en el Mercado Forex, Tesis (2022), https://www.inidem.edu.mx/assets/tesis_jennifer-lopez-chacon-teoria-de-norma-en-el-mercado-financiero-para-el-arbitraje-de-divisas-en-el-mercado-forex.pdf
J. Schwichtenberg, Physics from Finance: A gentle introduction to gauge theories, fundamental interactions and fiber bundles (No-Nonsense Books, 2019).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A. Raya, M. B. Flores Romero, J. López-Chacón
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.