Broad spectrum attenuated total reflectance: numerical and experimental demonstration

Authors

  • E. Pisano CONAHCYT - CIMAV
  • F. Armenta-Monzon CIMAV
  • R. Israel Rodr´ıguez-Beltran CONAHCYT - CICESE
  • N. Ornelas-Soto ITESM
  • M. I. Mendivil Palma CIMAV
  • A. Garc´ıa-Garc´ıa CIMAV
  • R. Téllez Limón CONAHCYT - CICESE

DOI:

https://doi.org/10.31349/RevMexFisE.22.010209

Keywords:

Plasmonics, Broadband reflectivity, Attenuated total reflection, Metaphotonics

Abstract

Nano-optics is one of the most rapidly expanding fields in physics. Providing students with a basic knowledge of nano-optics and its practical applications, bridges the gap between theoretical concepts and real-world technological advancements, making the study of this branch of physics more tangible and exciting. In this study, we present a comprehensive analysis of the reflectivity of light from a thin-multilayered system across a broad spectrum. We theoretically examined the reflection of incident plane waves at interfaces between different media using the T-matrix method. We compared our theoretical findings with experimental results obtained from an attenuated total reflection (ATR) setup, which employed a supercontinuum laser as light source. This setup allowed us to observe both angular and spectral dependence of reflectivity. The sample under study, fabricated using e-beam physical vapor deposition, consisted of a BK-7 glass substrate, a 3 nm Cr layer, a 30 nm Au layer, and air as the superstrate. The obtained results demonstrate the accuracy of both, experimental and numerical methods. Our study not only serves as a valuable didactic resource, but also opens new perspectives for sensing applications where spectral shift of plasmonic resonances is a subject of interest.

References

M.-X. Li, et al., Research on wavelength division film of glasses based on 3D technology in cinema, In J. Chu and H. Jiang, eds., Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, vol. 11455, International Society for Optics and Photonics (SPIE, 2020) p. 114550G, 10.1117/12.2558372, URL https://doi.org/10.1117/12.2558372

S. M. Lafta, A. M. Naji, and N. J. Mohammed, Antireflective and Hard Multicoat Design for Allyl Diglycol Carbonate Plastic Spectacle Lenses, Key Engineering Materials 937 (2022) 139, 10.4028/p-250jz8

T. Palavets and M. Rosenfield, Blue-blocking Filters and Digital Eyestrain, Optometry and Vision Science 96 (2019) 48, 10.1097/OPX.0000000000001318

M. A. Zahid, et al., Anti-reflective coating and cooling technique for innovative photovoltaic system in tropical region, Journal of Power Sources 564 (2023) 232812, https://doi.org/10.1016/j.jpowsour.2023.232812

X. Hong, et al., Design, fabrication and energy-saving evaluation of five-layer structure based transparent heat mirror coatings

for windows application, Building Simulation (2023), 10.1007/s12273-022-0973-1

Mobility in Multilayered Amorphous Oxide Thin Film Transistor, IEEE Transactions on Electron Devices 68 (2021) 5618, 10.1109/TED.2021.3115732

S. Chen, et al., Ultrahigh Strain-Insensitive Integrated Hybrid Electronics Using Highly Stretchable Bilayer Liquid Metal Based Conductor, Advanced Materials 35 (2023) 2208569, https://doi.org/10.1002/adma.202208569

L. Rodríguez-Morales, et al., Experimental and theoretical study of a novel input polarization-independent nonlinear optical loop mirror with elliptical birefringence, Optics & Laser Technology 163 (2023) 109454, https://doi.org/10.1016/j.optlastec.2023.109454

M. M. Fadhali, Theoretical optimization of cavity configurations for fiber lasers: enhancement of mode oscillation and slow-light effect, Laser Physics 33 (2023) 055101, 10.1088/1555-6611/acc021

S. S. Panini, et al., Development of multilayer mirrors for space-based astronomical X-ray optics, Journal of Optics 47(2018) 91, 10.1007/s12596-017-0444-8

B. Mondal, et al., DarpanX: A python package for modeling X-ray reflectivity of multilayer mirrors, Astronomy and Computing 34 (2021) 100446, https://doi.org/10.1016/j.ascom.2020.100446

W.-C. Miao, et al., Modified Distributed Bragg Reflectors for Color Stability in InGaN Red Micro-LEDs, Nanomaterials 13 (2023), 10.3390/nano13040661

W. M. E. M. M. Daniyal, et al., Design and Optimization of Surface Plasmon Resonance Spectroscopy for Optical Constant Characterization and Potential Sensing Application: Theoretical and Experimental Approaches, Photonics 8 (2021), 10.3390/photonics8090361

I. S. Khasanov, et al., Optical Characterization of Thin Films by Surface Plasmon Resonance Spectroscopy Using an Acousto-Optic Tunable Filter, Materials 16 (2023), 10.3390/ma16051820

W. M. E. M. M. Daniyal, et al., Surface plasmon resonance assisted optical characterization of nickel ion solution and nanocrystalline cellulose-graphene oxide thin film for sensitivity enhancement analysis, Physica B: Condensed Matter 646 (2022) 414292, https://doi.org/10.1016/j.physb.2022.414292

F. B. K. Eddin, et al., Plasmonic Refractive Index Sensor Enhanced with Chitosan/Au Bilayer Thin Film for Dopamine Detection, Biosensors 12 (2022), 10.3390/bios12121124

G. Morales-Luna, et al., Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive

index changes, Optics & Laser Technology 131 (2020)106332, https://doi.org/10.1016/j.optlastec.2020.106332

M. Herrera-Domínguez, et al., Development of a surface plasmon resonance based immunosensor for diclofenac quantification in water, Chemosphere 336 (2023) 139156, https://doi.org/10.1016/j.chemosphere.2023.139156

R. Téllez-Limón and R. Salas-Montiel, Nanowires Integrated to Optical Waveguides, In X. Peng, ed., Nanowires, chap. 8 (IntechOpen, Rijeka, 2021), 10.5772/intechopen.95689, URL https://doi.org/10.5772/intechopen.95689.

M.-u. A. Abdulkareem, et al., Integrated Optical Filters with Hyperbolic Metamaterials, Nanomaterials 13 (2023), 10.3390/nano13040759

F. S. Saeidi and M. Moradi, Designing a Multi-Periodic Photonic Crystal with Adjustable Transmission Peak for Optical Filter Applications, Journal of Nanostructures 13 (2023) 66,10.22052/JNS.2023.01.008

I. Haddouche and L. Cherbi, Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides, Optics Communications 382 (2017)132, https://doi.org/10.1016/j.optcom.2016.07.068

S. Khani, M. Danaie, and P. Rezaei, Design of a Single-Mode Plasmonic Bandpass Filter Using a Hexagonal Resonator Coupled to Graded-Stub Waveguides, Plasmonics 14 (2019) 53,10.1007/s11468-018-0777-4

A. Bezza, A. Cherifi, and B. Bouhafs, Designing high sensitivity surface plasmon resonance sensor using a left-handed material layer, Revista Mexicana de Física 69 (2023) 0210021–, 10.31349/RevMexFis.69.021002

V. M. Agranovich and A. A. Maradudin, Surface Polaritons (Elsevier Science, North Holland, 2012).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2010), URL https://doi.org/10.1007/0-387-37825-1.

A. Kocabas, S. S. Senlik, and A. Aydinli, Slowing Down Surface Plasmons on a Moiré Surface, Phys. Rev. Lett. 102 (2009) 063901, 10.1103/PhysRevLett.102.063901

S. Balci, et al., Direct imaging of localized surface plasmon polaritons, Opt. Lett. 36 (2011) 3401, 10.1364/OL.36.003401

R. Chuliá-Jordán and A. Unger, Comparison of the Different Bandgap Cavities in a Metallic Four-Mode Plasmonic Structure, Plasmonics 10 (2015) 429, 10.1007/s11468-014-9824-y

F. M. Balci, et al., Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral

bimetallic nanocrystals, Nanoscale Adv. 3 (2021) 1674,10.1039/D0NA00829J

R. Chlebus, et al., Surface Plasmon Resonance Based Measurement of the Dielectric Function of a Thin Metal Film, Sensors 18 (2018), 10.3390/s18113693

P. Hlubina and D. Ciprian, Spectral Phase Shift of Surface Plasmon Resonance in the Kretschmann Configuration: Theory and Experiment, Plasmonics 12 (2017) 1071, 10.1007/s11468-016-0360-9

P. Arora, et al., Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing, Scientific Reports 8 (2018) 9060, 10.1038/s41598-018-27023-x

A. Shalabney and I. Abdulhalim, Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,

Opt. Lett. 37 (2012) 1175, 10.1364/OL.37.001175

R. A. Pavelkin, Excitation of the broadband surface plasmon polaritons in planar metal-dielectric structures, In V. L. Derbov, ed., Laser Physics, Photonic Technologies, and Molecular Modeling, vol. 12193, International Society for Optics and Photonics (SPIE, 2022) p. 121930A, 10.1117/12.2623149, URL https://doi.org/10.1117/12.2623149

S. A. Furman and A. V. Tikhonravov, Basics of optics of multilayer systems (Editions Frontieres, Paris, 1992).

J. D. Jackson, Classical Electrodynmics (John Wiley & Sons, Inc., New York, 1962).

E. Kretschmann and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift für Naturforschung A 23 (1968) 2135, doi:10.1515/zna-1968-1247

J. Moreland, A. Adams, and P. K. Hansma, Efficiency of light emission from surface plasmons, Phys. Rev. B 25 (1982) 2297, 10.1103/PhysRevB.25.2297

P. B. Johnson and R. W. Christy, Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd, Phys. Rev. B 9(1974) 5056, 10.1103/PhysRevB.9.5056

A. Vial, et al., Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finitedifference time-domain method, Phys. Rev. B 71 (2005)085416, 10.1103/PhysRevB.71.085416

D. Barchiesi and T. Grosges, Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth, Journal of Nanophotonics 8 (2014) 083097, 10.1117/1.JNP.8.083097

D. Barchiesi and T. Grosges, Errata: Fitting the optical constants of gold, silver, chromium, titanium and aluminum in the visible bandwidth, Journal of Nanophotonics 8 (2015) 089996,10.1117/1.JNP.8.089996

A. P. Vinogradov, et al., Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam, Phys. Rev. B 97 (2018) 235407, 10.1103/PhysRevB.97.235407

E. Ley-Koo, Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings, Rev. Mex. Fís. 64 (2018) 326, https://doi.org/10.31349/RevMexFis.64.326

D. J. Griffiths, Introduction to electrodynamics, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1989), pp. 331–334

S. PalDey and S. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering: A 342 (2003) 58, https://doi.org/10.1016/S0921-5093(02)00259-9

Downloads

Published

2025-01-01

How to Cite

[1]
E. Pisano, “Broad spectrum attenuated total reflectance: numerical and experimental demonstration”, Rev. Mex. Fis. E, vol. 22, no. 1 Jan-Jun, pp. 010209 1–, Jan. 2025.