Adding an Einsteinian motivation to key moments in an electromagnetism course

Authors

  • L. E. Fuentes-Cobas Centro de Investigación en Materiales Avanzados
  • M. E. Fuentes-Montero Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua

DOI:

https://doi.org/10.31349/RevMexFisE.22.020215

Keywords:

Physics education, Electromagnetic field, Special relativity

Abstract

This paper aims to provide physics teachers with tools to help deepen the understanding of the laws of electromagnetism. The fundamental contributions of our proposal are: a) to use quotes from mythical characters in the history of science as a motivating educational resource; b) to promote the discussion of striking and fundamental topics; c) to mention diverse approaches and stimulate the search for correct answers to provocative questions. Citations from Einstein refer to principal contributions made by Newton, Maxwell and himself. Emphasis is placed on the cognitive value of differential (local, infinitesimal) analysis of fundamental concepts (field structure, causality, field relativistic transformations). The electromagnetism unity is analyzed from the point of view of special relativity. It is clarified that descriptions suggesting that the magnetic field is dispensable are contrary to the Einsteinian approach: they assume that, to describe the interaction between moving charges, there is a preferred coordinate system for each particular problem. An introductory presentation of the tensor form of Maxwell’s equations is provided.

References

L. Bollen et al., Student difficulties regarding symbolic and graphical representations of vector fields, Physical Review Physics Education Research 13 (2017) 020109, https://doi.org/10.1103/PhysRevPhysEducRes.13.020109

B. Buonaura and G. Giuliani, Teaching Electromagnetism in elementary physics or upper high schools courses, Giorn. Fis. 4 (2024) 341, https://dx.doi.org/10.1393/gdf/i2024-10535-8

J. Martí, Obras completas 2nd ed. (Editorial de Ciencias Sociales, Cuba, 1992)

F. Richtmyer, Physics is Physics, Am. J. Phys. 1 (1933) 1, https://doi.org/10.1119/1.1992814

V. F. Weisskopf, Physics Today 29 (1976) 23. https://doi.org/10.1063/1.3023516

C. Hidalgo, EPS Grand Challenges Physics for Society in the Horizon 2050, (IOP Publishing, Bristol, UK, 2024), pp. 831. https://doi.org/10.1088/978-0-7503-6342-6

M. F. Taşar, and P. R. Heron, The International Handbook of Physics Education Research: Special Topics, (AIP Publishing Books, 2023), pp. 6.1-26.24. https://doi.org/10.1063/9780735425514

A. Einstein, Essays in science, (Philosophical Library, New York, 1934)

M. Bunge, Critical approaches to science and philosophy, (Routledge, 2018), pp. 234- 243. https://www.routledge.com/Critical-Approaches-to-Science-and-Philosophy/Bunge/p/book/9780765804273

N. Bohr, On the Notions of Causality and Complementarity, Dialectica 2 (1948) 312. https://doi.org/10.1111/j.1746-8361.1948.tb00703.x

E. M. Purcell and D. J. Morin, Electricty and Magnetism, 3rd ed. (Cambridge University Press, Cambridge, 2013)

B. Crowell, Fields and Circuits, (Light and Matter, Fullerton, 2021), pp. 463

L. Fuentes-Cobas, J. Matutes-Aquino, and M. FuentesMontero, Chapter Three - Magnetoelectricity, vol. 19 of Handbook of Magnetic Materials, pp. 129-229, https://doi.org/10.1016/B978-0-444-53780-5.00003-X

R. P. Feynman, QED: The strange theory of light and matter, (Princeton University Press, Princeton, 1985), pp. 158

S. E. Hill, Rephrasing Faraday’s Law, Phys. Teach. 48 (2010) 410, https://doi.org/10.1119/1.3479724

S. E. Hill, Reanalyzing the Ampère-Maxwell Law, Phys. Teach. 49 (2011) 343, https://doi.org/10.1119/1.3628256

O. D. Jefimenko, Presenting electromagnetic theory in accordance with the principle of causality, Eur. J. Phys. 25 (2004) 287, https://doi.org/10.1088/0143-0807/25/2/015

R. P. Feynman, The Feynman lectures on physics, (AddisonWesley, Michigan, 1963), pp. 13.6-13.10. https://www.feynmanlectures.caltech.edu/II 13.html https://www.feynmanlectures.caltech.edu/Notes.html

R. Resnick, D. Halliday, and K. S. Krane, Physics, vol. 2, 4th ed. (Grupo Editorial Patria, Mexico, 2007)

F. Kamphorst et al., An Educational Reconstruction of Special Relativity Theory for Secondary Education, Sci. & Educ. 32 (2023) 57, https://doi.org/10.1007/s11191-021-00283-2

D. A. Muller, Magnets and Relativity, 2019

D. Dugdale, Essentials of electromagnetism, (Macmillan, London, 1997), pp. 305-326. https://archive.org/details/essentialsofelec0000dugd

D. J. Griffiths, Introduction to electrodynamics, 5th ed. (Cambridge University Press, Cambridge, 2024), pp. 554-572. https://doi.org/10.1017/9781009397735

H. de Vries, The simplest, and the full derivation of Magnetism as a Relativistic side effect of ElectroStatics (2008)

J. Houlihan, Is magnetic field due to an electric current a relativistic effect?, Eur. J. Phys. 17 (1996) 180, https://doi.org/10.1119/5.0086631

O. D. Jefimenko, Is magnetic field due to an electric current a relativistic effect?, Eur. J. Phys. 17 (1996) 180, https://doi.org/10.1088/0143-0807/17/4/006

D. Tong, Lectures on Electromagnetism, (University of Cambridge, Cambridge, 2024), pp. 95-115. https://www.damtp.cam.ac.uk/user/tong/em.html

S. A. Hughes, A covariant Formulation of electromagnetics, (MIT, Boston, 2021). https://web.mit.edu/sahughes/www/8.033/lec12.pdf

J. C. Maxwell, VIII. A dynamical theory of the electromagnetic field, Phil. Trans. R. Soc. Lond. 155 (1865) 459. https://archive.org/details/dynamicaltheoryo00maxw

H. Chaparro Hernández, and E. A. Meza Lozano, Aportes de Oliver Heaviside a la teoría electromagnética de Maxwell y a su enseñanza, Barchelor Thesis, Universidad Pedagógica Nacional, Colombia, (2012), https://hdl.handle.net/20.500.12209/2125

O. Heaviside, Electromagnetic theory, (The Electrician, London, 1893), pp. 130

Downloads

Published

2025-07-01

How to Cite

[1]
L. E. Fuentes-Cobas and M. E. Fuentes-Montero, “Adding an Einsteinian motivation to key moments in an electromagnetism course”, Rev. Mex. Fis. E, vol. 22, no. 2 Jul-Dec, pp. 020215 1–, Jul. 2025.