Teaching of tension force: a massive rope in equilibrium

Authors

  • E. Z. Ardila-Giraldo Grupo de Ciencias e Ingeniería-CEI
  • M. E. Díaz-Arenas Pontificia Universidad Javeriana
  • G. I. González-Pedreros Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.31349/RevMexFisE.22.020207

Keywords:

Tension force; massive rope; equilibrium; basic level

Abstract

A massive rope in equilibrium, with fixed extremes, takes a particular shape as a consequence of both, the weight and tension on each small rope segment. An analysis of forces acting on each rope infinitesimal section under static equilibrium conditions, results in a differential equation with a solution that provides the general shape of the rope and from which, the tension on each point of the rope is obtained. From this theoretical treatment a set of three rules are proposed. They allow to create and to solve a variety of theoretical and experimental problems dealing with tension force applied to massive ropes under static equilibrium conditions. The teaching experience with first-year engineering students shows that they deduced the rules and solve different problems. Also, it provides to the teacher possibilities to teach tension force in massive rope at basic physics level. The first approaching to test the didactic-proposal was developed into collaborative learning framework. However, it can be configure to suit pedagogical needs.

References

S. Flores et al., Students’ difficulties with tension in massless strings. Part I., Rev. Mex. Fis. 55 (2009) 21

S. Flores et al., Students’ difficulties with tension in massless strings. Part II, Rev. Mex. Fis. 55 (2009) 118

K. R. Symon, Mechanics, 3rd ed. (Addison-Wesley Publishing Company, USA, 1971)

A. Higdon et al., Engineering Mechanics. Statics and Dynamics. (Prentice Hall, 1976)

R. Feynman, R. Leighton, and M. Sands, Mechanics, radiation and heat. (Addison Wesley Iberoamericana, 1987)

A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover Publications Inc., NY, 1963)

F. W. Sears, M. W. Zemansky, and H. D. Young, F´ısica Universitaria, 6th ed. (Addison-Wesley Iberoamericana, 1998)

P. A. Tipler, Physics for scientists and engineers (W. H. Freeman and Company, 1999)

R. A. Serway and J. W. Jewett, Physics for scientists and engineers, 6th ed. (Thomson-Brooks/Cole, 2004)

R. Lane, Fisica Universitaria (International Thomson Editores, 2002)

A. French, Mecánica newtoniana (Editorial Reverte, 1974), p. 151

D. Kleppner and R. Kolenkow, An Introduction to Mechanics (Cambridge University Press, 2014), pp. 89-90

J. C. McCormac and J. K. Nelson, Structural analysis: a classical and matrix approach, 2nd ed. (Addison-Wesley Educational Publishers Inc., 1997)

S. P. Timoshenko and D. H. Young, Theory of Structures, 2nd ed. (McGraw-Hill, 1975)

E. Butkov, Mathematical Physics (Addison-Wesley Publishing Company, 1973)

D. P. Ausubel, J. D. Novak, and H. Hanesian, Psicología educativa: un punto de vista cognoscitivo, Segunda edición ed. (Trillas SA de CV, Mexico City, Mexico, 1983)

S. Gil, Experimentos de física: usando las TIC y elementos de bajo costo (Alfaomega Grupo Editor Argentino, 2014), pp. 216- 221

R. Hibbeler, Estática 12th ed. (Prentice Hall, 2010), pp. 336-349

D. W. Johnson, R. T. Johnson, and E. J. Holubec, El aprendizaje cooperativo en el aula, 1st ed. (PAIDOS, Buenos Aires, Argentina, 1999), pp. 1-144

Z. Z. Zúñiga, El aprendizaje cooperativo y su influencia en el aprendizaje del curso de Matemática Financiera en los estudiantes de la Facultad de Ciencias Empresariales de la Universidad Nacional de Educación (UNE), Revista Dilemas Contemporáneos: Educación, Política y Valores IX (2022) 1

W. L. Velásquez Alava et al., Aprendizaje colaborativo en la enseñanza de matemática, Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS 5 (2023) 103, https://doi.org/10.59169/pentaciencias.v5i6.842

L. Morales-Maure et al., Habilidades Cognitivas a través de la Estrategia de Aprendizaje Cooperativo y Perfeccionamiento Epistemológico en Matemática de Estudiantes de Primer Año de Universidad, Formación universitaria 11 (2018) 45, https://dx.doi.org/10.4067/S0718-50062018000200045

M. Fukumoto, The Principle of Somatic Learning by T. Hanna, Journal of the Philosophy of Sport and Physical Education 35 (2013) 83, https://doi.org/10.9772/jpspe.35.83

P. Navarro, El aprendizaje cooperativo, 4th ed. (Editorial Cara Parens, 2012)

J. de D. Arias Silva, C. C. Roa, and F. Estupiñan Tarapuez

S. Sheppard and B. Tongue, Estática: análisis y diseño de sistemas en equilibrio (Limusa Willey, 2008), pp. 572-594

J. M. Goicolea Ruigómez, Cálculo de cables (Archivo Digital UPM, 2021), https://doi.org/10.20868/UPM.book.67125

A. Beléndez Vázquez, T. Beléndez Vázquez, and C. Neipp López, Estudio estático de un cable homogéneo bajo la acción de su propio peso: catenaria, Rev. Esp. Fis. 15 (2001) 38

T. Beléndez, C. Neipp, and A. Beléndez, Cables Under Concentrated Loads: A Laboratory Project for an Engineering Mechanics Course, Int. J. Engng. 19 (2003) 272

H. Irvine and G. Sinclair, The suspended elastic cable under the action of concentrated vertical loads, Int. J. Solids Struct. 12 (1976) 309, https://doi.org/10.1016/0020-7683(76)90080-9

M. Babaz et al., Unusual expression of tension of a massless cable with application to the oscillations of a mass suspended to a cable with a variable length, J. Sound Vib. 363 (2016) 446, https://doi.org/10.1016/j.jsv.2015.10.020

S. A. Ali, Dynamic response of sagged cables, Comput. Struct. 23 (1986) 51, https://doi.org/10.1016/0045-7949(86)90106-9

Downloads

Published

2025-07-01

How to Cite

[1]
E. Z. Ardila-Giraldo, M. E. Díaz-Arenas, and G. I. . González Pedreros, “Teaching of tension force: a massive rope in equilibrium”, Rev. Mex. Fis. E, vol. 22, no. 2 Jul-Dec, pp. 020207 1–, Jul. 2025.