The multiple representations ability of students in linear motion

Authors

  • Umrotul Universitas Negeri Malang
  • Sutopo Universitas Negeri Malang
  • S. Kusairi Universitas Negeri Malang
  • E. Puspitaningtyas Universitas Negeri Malang
  • A. Indika Seprapti Universitas Negeri Malang
  • M. Ulfah SMK Attaufiqiyah

DOI:

https://doi.org/10.31349/RevMexFisE.22.020219

Abstract

This research aims to reveal students’ ability to analyze the equation of position versus time, so students can describe quantities of motion with multiple representations in linear motion. Subjects included 54 students of XI grade from one of the high schools in Pasuruan and Sumenep Madura. Then three students were interviewed about the difficulties when making representations. The, research instrument was an open-ended test of linear motion with reability 0.707. The test instrument is a question in position versus time, and then students are asked to answer 5 questions by describing the quantities of motion in the representation of tables, mathematical equations, graphs, verbal, and motion diagrams. The results showed that students had difficulties describing the quantities of motion with multiple representations. The most common difficulty is drawing motion diagrams. The study recommended further research using learning-based multiple representations to improve conceptual understanding.

References

L. Bollen, et al., Student difficulties regarding symbolic and graphical representations of vector fields, Physical Review Physics Education Research 13 (2017) 020109, doi:10. 1103/PhysRevPhysEducRes.13.020109

P. Klein, A. Müller, and J. Kuhn, Assessment of rep- resentational competence in kinematics, Physical Review Physics Education Research 13 (2017) 1, doi:10.1103/ PhysRevPhysEducRes.13.010132

M. De Cock, Representation use and strategy choice in physics problem solving, Physical Review Special Topics- Physics Education Research 8 (2012) 1, doi:10.1103/ PhysRevSTPER.8.020117

D. Rosengrant, E. Etkina, and A. Van Heuvelen, An overview of recent research on multiple representations, In AIP Con- ference proceedings, vol. 883 (American Institute of Physics, 2007) pp. 149–152, doi:10.1063/1.2508714.

T. Haratua and J. Sirait, Representations based physics instruc- tion to enhance students’ problem solving, American Jour- nal of Educational Research 4 (2016) 1, doi:10.12691/ education-4-1-1.

R. J. Dufresne, W. J. Gerace, and W. J. Leonard, Solving physics problems with multiple representations, The Physics Teacher 35 (1997) 270, doi:10.1119/1.2344681

B. Ibrahim and N. S. Rebello, Representational task for- mats and problem solving strategies in kinematics and work, Physical Review Special Topics-Physics Education Research 8 (2012) 1, doi:10.1103/PhysRevSTPER.8.010126

E. Puspitaningtyas, et al., Physics students’ responses when asked to select and solve motion kinematics problems in vari- ous representations, In AIP Conference Proceedings, vol. 2330 (AIP Publishing, 2021) doi:10.1063/5.0043437.

D. Rosengrant, A. Van Heuvelen, and E. Etkina, Do students use and understand free-body diagrams?, Physical Review Special Topics-Physics Education Research 5 (2009) 010108, doi:10.1103/PhysRevSTPER.5.010108

M. Masrifah, et al., An investigation of physics teachers’ mul- tiple representation ability on newton’s law concept, Jurnal Penelitian & Pengembangan Pendidikan Fisika 6 (2020) 105, doi:10.21009/1.06112

D. F. Treagust, The importance of multiple representa- tions for teaching and learning science, Education re- search highlights in mathematics, science and technology (2018) 215, http://link.springer.com/10.1007/

-981-10-3549-4

A. Van Heuvelen and X. Zou, Multiple representations of work–energy processes, American Journal of Physics 69 (2001) 184, doi:10.1119/1.1286662

Y. Theasy et al., Multi-representation ability of students on the problem solving physics, In Journal of Physics: Con- ference Series, vol. 983 (IOP Publishing, 2018) p. 012005, doi:10.1088/1742-6596/983/1/012005.

N. H. Dienyati, I. K. Werdhiana, and U. Wahyono, Analisis pemahaman konsep siswa berdasarkan multirepresentasi pada materi usaha dan energi kelas XI SMAN 1 banawa tengah, Ju- rnal Kreatif Online 8 (2020)

A. Purwanti, S. Sutopo, and H. Wisodo, Penguasaan Konsep Materi Kinematika pada Siswa SMA Kelas X dengan Meng- gunakan Pembelajaran Multirepresentasi, Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan 2 (2017) 575

R. J. Beichner, Testing student interpretation of kinematics graphs, American journal of Physics 62 (1994) 750, doi: 10.1119/1.17449

P. Hale, Connecting Research to Teaching: Kinematics and Graphs: Students’ Difficulties and CBLs, The Mathematics Teacher 93 (2000) 414, https://doi.org/10.5951/ MT.93.5.0414

M. LUEDO, S. SUPENO, and M. MARYANI, Kemampuan

Interpretasi Grafik Siswa Sekolah Swasta di Thailand Sela- tan pada Materi Kinematika Gerak dalam Pembelajaran Fisika (2021), doi:10.36709/jipfi.v6i2.16409

L. C. McDermott, M. L. Rosenquist, and E. H. Van Zee, Stu- dent difficulties in connecting graphs and physics: Examples from kinematics, American Journal of Physics 55 (1987) 503, doi:10.1119/1.15104

M. Planinic, et al., Comparison of student understanding of line graph slope in physics and mathematics, International journal of science and mathematics education 10 (2012) 1393, doi:10.1007/s10763-012-9344-1

M. L. Rosenquist and L. C. McDermott, A conceptual approach to teaching kinematics, American Journal of Physics 55 (1987) 407, doi:10.1119/1.15122

S. Ceuppens, et al., 9th grade students’ understanding and strategies when solving x (t) problems in 1D kinematics and y (x) problems in mathematics, Physical Review Physics Education Research 15 (2019) 010101, doi:10.1103/ PhysRevPhysEducRes.15.010101

C.-S. Hung and H.-K. Wu, Tenth graders’ problem-solving performance, self-efficacy, and perceptions of physics prob- lems with different representational formats, Physical Re- view Physics Education Research 14 (2018) 020114, doi: 10.1103/PhysRevPhysEducRes.14.020114

E. Torigoe, How numbers help students solve physics prob- lems, arXiv preprint arXiv:1112.3229 (2011), http:// arxiv.org/abs/1112.3229

E. Torigoe and G. Gladding, Same to us, different to them: Numeric computation versus symbolic representation, In AIP Conference Proceedings, vol. 883 (American Institute of Physics, 2007) pp. 153–156, doi:10.1063/1.2508715.

A. Motlhabane et al., Learner’s alternative and misconcep- tions in physics: A phenomenographic study, Journal of Baltic Science Education 15 (2016) 424, https://www.ceeol. com/search/article-detail?id=974465

M. Tamyiz, M. Yusup, et al., Analisis Kemampuan Siswa dalam Membuat Grafik Pada Pokok Bahasan Kinematika di SMA N 1 Indralaya, Jurnal Literasi Pendidikan Fisika (JLPF) 1 (2020) 145, doi:10.30872/jlpf.v1i2.263

E. Etkina, et al., Scientific abilities and their assessment, Phys- ical Review special topics-physics education research 2 (2006) 020103, doi:10.1103/PhysRevSTPER.2.020103

G. A. Morgan, et al., SPSS for introductory statistics: Use and interpretation (Psychology Press, 2004).

A. L. Strauss, The discovery of grounded theory: Strategies for qualitative research (Routledge, 2017).

R. A. Serway and J. W. Jewett, Physics for scientists and engi- neers (Cengage learning, 2018).

M. Hill and M. D. Sharma, Students’ representational flu- ency at university: A cross-sectional measure of how mul- tiple representations are used by physics students using the representational fluency survey, Eurasia Journal of Mathe- matics, Science and Technology Education 11 (2015) 1633, doi:10.12973/eurasia.2015.1427a

M. Wati, STUDI KEMAMPUAN REPRESENTASI SISWA PADA POKOK BAHASAN HUKUM NEW-

TON, Jurnal Inovasi Pembelajaran Fisika 7 (2020) 1, https://repo-dosen.ulm.ac.id//handle/ 123456789/17842

D. R. P. B. Kohl and N. D. Finkelstein, Strongly and weakly directed approaches to teaching multiple representation use in physicsi, Phys. Rev. Spec. Top. - Phys. Educ. Res. 3 (2007) 1, doi:10.1103/PhysRevSTPER.3.010108

Downloads

Published

2025-07-01

How to Cite

[1]
Umrotul, Sutopo, S. Kusairi, E. Puspitaningtyas, A. Indika Seprapti, and M. Ulfah, “The multiple representations ability of students in linear motion”, Rev. Mex. Fis. E, vol. 22, no. 2 Jul-Dec, pp. 020219 1–, Jul. 2025.