De la teoría al análisis de datos de ondas gravitacionales
DOI:
https://doi.org/10.31349/RevMexFis.22.020223Keywords:
Gravitational Waves, Data analysis, GW150914.Abstract
En este artículo se introduce la teoría y el análisis de datos de ondas gravitacionales con el propósito de replicar, paso por paso, la detección y estimación de parámetros de la primera señal de onda gravitacional reportada por la colaboración LIGO. Para ello se presenta la teoría de Einstein linealizada, el desarrollo analítico de señales de sistemas binarios y las polarizaciones esperadas de una inspiral de objetos compactos. Posteriormente, se introducen las técnicas estadísticas básicas del análisis de estas señales y el método de detección. Finalmente, se analiza el evento GW150914, obtenido de la paquetería PyCBC, se filtra la señal para visualizarla y se realiza la estimación de las masas y la distancia. Con el propósito de facilitar la reproducción de este hito de la física relativista, se incluye el código para filtrar la señal y lograr su visualización y estimación de parámetros.
This article introduces gravitational wave theory and data analysis with the purpose of replicating, step by step, the detection and parameter estimation of the first gravitational wave signal reported by the LIGO collaboration. For this purpose, the linearized Einstein theory and the expected polarizations of a compact object inspiral are presented. Then, the basic statistical techniques for analyzing these signals and the detection method are introduced. Finally, the GW150914 event is analyzed, the signal is filtered for visualization, and the masses and distance are estimated. To facilitate the reproduction of this milestone in relativistic physics, the code for filtering the signal and achieving its visualization and parameter estimation is included.
References
S. Jordan, The Gaia Project: - technique, performance and status, Astron. Nachr. 329 (2008) 875, https://doi.org/10.1002/asna.200811065
D. Jones and A. Balogh, The James Webb Space Telescope, Space Science Reviews 121 (2006) 81, https://doi.org/10.1007/s11214-006-8315-7
D. Collaboration et al., The DESI Experiment Part I: Science, Targeting, and Survey Design (2016), https://arxiv.org/abs/1611.00036
P. A. R. Ade et al., Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127 (2021) 151301, https://doi.org/10.1103/PhysRevLett.127.151301
B. A. Benson et al., SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope, In W. S. Holland and J. Zmuidzinas, eds., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, International Society for Optics and Photonics 9153 (2014) 91531P, https://doi.org/10.1117/12.2057305
B. P. Abbott et al., GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116 (2016) 131103, https://doi.org/10.1103/PhysRevLett.116.131103
F. Acernese et al., Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001, https://doi.org/10.1088/0264-9381/32/2/024001
Y. Aso et al., Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D 88 (2013) 043007, https://doi.org/10.1103/PhysRevD.88.043007
O. Dreyer et al., Black-hole spectroscopy: testing general relativity through gravitational-wave observations, Class. Quantum Grav. 21 (2004) 787, https://doi.org/10.1088/0264-9381/21/4/003
G. Agazie et al., The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8, https://doi.org/10.3847/2041-8213/acdac6
A. G. Abac et al., Observation of Gravitational Waves from the Coalescence of a 2.5-4.5 M Compact Object and a Neutron Star, Astrophys. J. Lett. 970 (2024) L34, https://doi.org/10.3847/2041-8213/ad5beb
T. Robson, N. J. Cornish, and C. Liu, The construction and use of LISA sensitivity curves, Class. Quantum Grav. 36 (2019) 105011, https://doi.org/10.1088/1361-6382/ab1101
S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28 (2011) 094013, https://doi.org/10.1088/0264-9381/28/9/094013
J. D. E. Creighton and W. G. Anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis (John Wiley & Sons, Ltd, 2011), https://doi.org/10.1002/9783527636037
C. Moreno et al., Introducción a las ondas gravitacionales, Lat. Am. J. Phys. Educ. 2 (2008) 311
J. M. Antelis and C. Moreno, Obtaining gravitational waves from inspiral binary systems using LIGO data, Eur. Phys. J. Plus 132 (2017) 10, https://doi.org/10.1140/epjp/i2017-11283-5
B. P. Abbott et al., The basic physics of the binary black hole merger GW150914, Ann. Phys. 529 (2017) 1600209, https://doi.org/10.1002/andp.201600209
K. D. Kokkotas and B. G. Schmidt, Quasi-Normal Modes of Stars and Black Holes, Living Reviews in Relativity 2 (1999) 2, https://doi.org/10.12942/lrr-1999-2
G. Woan et al., The GEO 600 gravitational wave detector - Pulsar prospects, ASP Conf. Ser. 302 (2003) 351
M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, 2007), https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
B. P. Abbott, et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102, https://doi.org/10.1103/PhysRevLett.116.061102
P. developers, PyCBC: Gravitational Wave Data Analysis (2020), https://pycbc.org
L. S. Collaboration, Gravitational Wave Data Analysis Tutorial, https://gwosc.org/tutorials/
A. Einstein, Approximative Integration of the Field Equations of Gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 688
J. Aasi et al., Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001, https://doi.org/10.1088/0264-9381/32/7/074001
J. Cornelison et al., Improved polarization calibration of the BICEP3 CMB polarimeter at the South Pole, In J. Zmuidzinas and J.-R. Gao, eds., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, vol. 12190, International Society for Optics and Photonics (SPIE, 2022) p. 121901X, https://doi.org/10.1117/12.2620212
A. G. Adame et al., DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements (2024), https://doi.org/10.48550/arXiv.2411.12022
A. Coerver et al., Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G, Astrophys. J. 982 (2025) 15, https://dx.doi.org/10.3847/1538-4357/ada35d
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 J. M. Villa-Alatorre, C. Moreno

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.