Permeability simulation in an elastic deformable sandstone under stress changes

Authors

  • M. E. Vadillo-Sáenz Instituto Mexicano del Petróleo
  • P. F. Aguilar-Gasteum Instituto Mexicano del Petróleo
  • M. A. Díaz-Viera Instituto Mexicano del Petróleo
  • M. Coronado Instituto Mexicano del Petróleo

DOI:

https://doi.org/10.31349/SuplRevMexFis.1.2.25

Keywords:

poroelasticity, stress, permeability, simulation

Abstract

Fluid flow and rock mechanics become coupled in various important phenomena in Geosciences. In order to study this coupling, laboratory work has been carried out in triaxial cells along the years for various rock and fluid types at different confinement stress and pore pressure conditions. In a similar way, poromechanic models have been developed to simulate them, in which constitutive porosity and permeability correlation models in terms of strain, stress and fluid pressure have to be provided. However, to date, the applicability of the available correlation models to describe this phenomenon in different types of rock remains to be analyzed. In this work, a single-phase poroelastic model is applied to simulate a published geomechanical test performed in sandstones to examine the capacity of commonly used constitutive porosity and permeability correlations to describe the behavior of a homogeneous poroelastic medium. After discussing the results, we conclude that for this sandstone, the best permeability constitutive correlation model is Walder and Nur.

Author Biographies

M. E. Vadillo-Sáenz, Instituto Mexicano del Petróleo

Posgrado del Instituto Mexicano del Petróleo

P. F. Aguilar-Gasteum, Instituto Mexicano del Petróleo

Gerencia de Ingeniería de Recuperación Adicional

M. A. Díaz-Viera, Instituto Mexicano del Petróleo

Gerencia de Ingeniería de Recuperación Adicional

M. Coronado, Instituto Mexicano del Petróleo

Gerencia de Ingeniería de Yacimientos

References

Ojagbohunmi, S., Chalaturnyk, R., and Leung, J. (2012). Coupling of Stress Dependent Relative Permeability and Reservoir Simulation. In Eighteenth SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 14–18 April 2012., SPE 154083. Society of Petroleum Engineers.

Jones, C. and Smart, B. (2002). Stress induced changes in twophase permeability. In SPE/ISRM Rock Mechanics Conference held in Irving, Texas, 20-23 October, SPE/ISRM 78155. Society of Petroleum Engineers.

Ma, F., He, S., Zhu, H., Xie, Q., and Jiao, C. (2012) The Effect of Stress and Pore Pressure on Formation Permeability of Ultra-Low-Permeability Reservoir. Journal of Petroleum Science and Engineering, 30: 1221–1231.

Huo, D., and Benson, S. M. (2016) Experimental Investigation of Stress-Dependency of Relative Permeability in Rock Fractures. Transp Porous Med, 113: 567–590.

Han, B., Xie, S. Y., and Shao, J. F. (2016) Experimental Investigation on Mechanical Behavior and permeability Evolution of a Porous Limestone Under Compression. Rock Mech Rock Eng, 49: 3425–3435.

Nelson, P. H. (1994) Permeability-Porosity Relationships in Sedimentary Rocks. The Log Analyst, 35: 38–62.

Wong, T.F., Zhu, W. (1999). Brittle faulting and permeability evolution: hydromechanical measurement, microstructural observation, and network modelling. In Faults and sub-surface fluid flow in the shallow crust Geophysical Monograph 113.

Costa, A. (2006) Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters, 33: 1–5.

Dong, Jia-Jyun, Hsu, Jui-Yu, Wu, Wen-Jie, Shimamoto, Toshi, Hung, Jih-Hao, Yeh, En-Chao, Wu, Yun-Hao and Sone, Hiroki (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7): 1141–1157.

Ma, J. (2014) Review of permeability evolution model for fractured porous media. J. Rock Mech. Geotech. Eng, 7 (3): 351–357.

Gai, S.H., Liu, H.Q., He, S.L., Lei, G., Mo, S.Y.,Huang, X.,Yang, Y. and Chen X. (2014) An improved particles model for stress sensitivity in low-permeability sandstones. Geosystem Eng, 19 (2): 89–95

Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York.

Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2):155–164.

Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys., 26:182 – 185.

Showalter, R. E. (2000). Diffusion in Poro-Elastic Media. Pages 310–340.

Chen, Z., Lyons, S., and Qin, G. (2004). The mechanical behavior of poroelastic media saturated with a newtonian fluid derived via homogenization. Internat. J. Numer. Anal. Modeling, 1:75 – 98.

Biot, M. and Willis, D. (1957). The elastic coefficients of the theory of consolidation. J Appl Mech ASME, 24:594 – 601.

COMSOL Multiphysics (2018). Reference manual, version 5.4. COMSOL AB.

Mandel, J. (1953). Consolidation des sols (étude mathématique). Geotechnique, 30:287 – 299.

Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., and Roegiers, J.-C. (1996). Mandel’s problem revisited. Geotechnique, 46(2):187–195.

Sangnimnuan, A., Li, J., and Wu, K. (2018). Development of efficiently coupled fluid-flow/geomechanics model to predict stress evolution in unconventional reservoirs with complex fracture geometry. SPE Journal, pages 640–660.

Kuhlman, K. L. and Matteo, E. N. (2018). Porosity and Permeability: Literature Review and Summary Mechanical Behavior of Salt IX, 15–27.

Mainguy, M. and Longuemare, P. (2002) Coupling Fluid Flow and Rock Mechanics: Formulations of the Partial Coupling Between Reservoir and Geomechanical Simulators. Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole - OIL GAS SCI TECHNOL, 57:355–367.

Coussy, O. (2004). Poromechanics. John Wiley and Sons, Chichester, England, first edition.

Carman, P. C. (1937) Carman pc. fluid flow through granular beds. Journal of Institution of Chemical Engineers, 15: S32–S48.

Kozeny, J. (1927) Uber kapillare Leitung des Wassers im Boden, Sitzb. Akad. Wiss. Wein, Math.-naturw Kl, 136:271–306.

Touhidi-Baghini, A. (1998) Ph.D. thesis, Department of Civil Engineering, University of Alberta, 1998.

Li, P., Chalaturnyk, R., and Polikar, M. (2004) Issues With Reservoir Geomechanical Simulations of the SAGD Process. Journal of Canadian Petroleum Technology - J CAN PETROL TECHNOL, 43

Walder, J. and Nur, A. (1984) Porosity reduction and crustal pore pressure development. Journal of Geophysical Research: Solid Earth, 89B13:11539–11548.

Ghabezloo, S., Sulem, J., Gu´edon, S., and Martineau, F. (2009). Effective stress law for the permeability of a limestone. International Journal of Rock Mechanics and Mining Sciences, 46:297–306.

David, C., Wong, T.-F., Zhu, W. and Zhang, J. Laboratory Measurement of Compaction-induced Permeability Change in Porous Rocks: Implications for the Generation and Maintenance of Pore Pressure Excess in the Crust. PAGEOPH,, 143: 425–456

Rice, J. R. (1992) Fault stress states, pore pressure distributions, and the weakness of the san andreas fault. In: Fault mechanics and transport properties in rocks., 475–503. London, UK: Academic Press.

Evans, J. P., Forster, C. B., and Goddard, J. V. (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19: 1393–1404. Department of Geology, Utah State University, Logan, UT 84322-4505, USA.

Tang, C. A., Tham, L. G., Lee, P. K. K., Yang, T. H. and Li, L. C. (2002) Coupled analysis of flow, stress and damage (FSD) in rock failure. International Journal of Rock Mechanics and Mining Sciences, 39:477–489. Department of Geology, Utah State University, Logan, UT 84322-4505, USA.

Shafer, J., Boitnott, G., and Ewy, T. (2008). Effective stress laws for petrophysical rock properties. Society of Petrophysicists and Well Log Analysts, 1–15. SPWLA 49th Annual Logging Symposium held in Edinburgh, Scotland, May 25-28, 2008.

Cheng A. H.-D. (2016). Poroelasticity. Springer International Publishing, 877.

Downloads

Published

2020-07-16

How to Cite

1.
Vadillo-Sáenz ME, Aguilar-Gasteum PF, Díaz-Viera MA, Coronado M. Permeability simulation in an elastic deformable sandstone under stress changes. Supl. Rev. Mex. Fis. [Internet]. 2020 Jul. 16 [cited 2024 Jul. 27];1(2):25-33. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5100