General thermodynamic efficiency loss, aging and Gompertz mortality law

Authors

  • Jorge A. Montemayor-Aldrete UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO.
  • Rafael F. Márquez-Caballé UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Ciencias

DOI:

https://doi.org/10.31349/SuplRevMexFis.1.4.59

Keywords:

Aging processes, Gompertz mortality rate, Non-equilibrium thermodynamics, Pre-biotic dissipative circular molecules, Lipid vesicles, Archean period.

Abstract

A simple and general thermodynamic theory is applied to describe the irreversible aspects of the continuous process of functional efficiency loss, which occurs in dissipative biological structures after they reach maturity [1]. This theory, among other things, follows Prigogine [2] by considering that these dissipative structures perform their functions and carry out cyclical processes per se since they are self-organizing away from equilibrium. By using the irreversible thermodynamic theory of aging by Montemayor-Aldrete et al [1], we have obtained results such as the following: The accumulated damage that occurs in dissipative biological structures after they reach maturity, which is the product of linear loss of functional efficiency with time, leads to the law of exponential mortality rate by Gompertz. The average solar power volumetric density of frequency ν dissipated by circular molecules of radius , which reside on the inner surface of some lipid vesicles that float in the Archean oceans and that contain water and other chemical components are obtained. Such expression resembles the Stefan–Boltzmann law which describes the power radiated from a black body in terms of its temperature. Also, an expression for the volumetric density of the average entropy production rate by molecules of radius  is obtained.  Finally, the coupling processes that occur between the matter and heat fluxes between the interior and the exterior of lentil-shaped lipid vesicles pumped by the solar radiation action are analyzed qualitatively as well as their possible consequences in relation to the prebiotic chemical evolution of dissipative systems that can give rise to life.

Author Biographies

Jorge A. Montemayor-Aldrete, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO.

Departamento de Estado Sólido.

Investigador Titular A de Tiempo Completo.

Rafael F. Márquez-Caballé, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Ciencias

Estudiante de  Maestría en Ciencias de la Tierra, UNAM

References

. J. A. Montemayor-Aldrete, P. Ugalde-Vélez, M. Del Castillo-Mussot, G. J. Vázquez, and E. F. Montemayor-Varela. Advances in Aging Research. 3(05) (2014) 368.

. G. Nicolis, I. Prigogine. Self-organization in nonequilibrium systems. Wiley, New York; 1997.

. A. Marshack. Yearbook of Physical Anthropology. 32 (1989) l.

. “World's Oldest Ritual Discovered -- Worshipped The Python 70,000 Years Ago” November 30, 2006, The Research Council of Norway.

https://www.sciencedaily.com/releases/2006/11/061130081347.htm

. S. Coulson, S. Staurset, and N. Walker. PaleoAnthropology, (2011) 18. doi:10.4207/PA.2011.ART42

B. Cardona Arenas, Tesis Doctoral: Envejecer en el antiguo Egipto una perspectiva médica, farmacéutica y cultural. Universitat Autònoma de Barcelona. (2013).

. I. Douglas-Hamilton, S. Bhalla, G. Wittemyer, F. Vollrath. Applied Animal Behaviour Science 100 (2006) 87.

. J. R. Anderson, A. Gillies, and L. C. Lock. Current Biology, 20(8) (2010) R349.

. J. R. Anderson. Current Biology. 26(13) (2016) R553.

. L. A. D. Campbell, P. J. Tkaczynski, M. Mouna, M. Qarro, J. Waterman, B. Majolo. Primates. 57(3) (2016) 309.

. Tito Lucrecio Caro. “De la Naturaleza de las Cosas”. Ediciones Cátedra. Juan Ignacio Luca de Tena, 15.28027 Madrid. (2016). ISBN.: 978-84-376-0413-8

. A. L. Lavoisier. “Memorias sobre la respiración y la transpiración de los animales”. Versión Castellana por Juan Pablo Dórs, Imp. Ciudad Lineal, Madrid, (1929).

. R.T. Balmer. Chemical Engineering Communications. 1982;17(1-6) (1982) 171.

. J. Miquel, A. C. Economos, J. E. Johnson. A systems analysis— thermodynamic view of cellular and organismic aging. In Johnson J.E. (eds) Aging and Cell Function. Springer US. (1984). p. 247.

. C. B. Olson. Mechanisms of ageing and development, 41(1-2) (1987) 1.

. B. T. Weinert, P. S. Timiras, P. S. Journal of applied physiology. 95(4), (2003)1706.

. S. J. Nieto-Villar, J. Rieumont, R. Quintana, and J. Miquel. Revista CENIC. Ciencias Químicas. 34(3), (2003)149.

. K. A. Hughes, R. M. Reynolds. Annu. Rev. Entomol. 50 (2005) 421.

. D. Yin, K. Chen. Experimental gerontology. 40(6) (2005) 455.

. R. Arking. Biology of aging: observations and principles. Oxford University Press. (2006). ISBN-13 978-0-19-516739-9, ISBN 0-19-516739-2.

. J. M. Nieto-Villar. Revista Cubana de Química. 18(1) (2006) 310.

. B. B. Baltes, C. W. Rudolph, A. C. Bal. The Oxford handbook of work and aging (2012) 117.

. A. E. Allahverdyan, & Q. A. Wang. Physical Review E, 87(3) (2013) 032139.

. G. P. Gladyshev. Advances in Gerontology. 4(2) (2014) 109.

G. P. Gladyshev. Natural Science. 7(05) (2015) 270.

. E. Tejera, A. Plain, A. Portelinha, J. L. H. Caceres, I. Rebelo, J. M. Nieto-Villar. Computational and Mathematical Methods in Medicine. 8(4) (2007) 287.

. A. Guerra, L. Triana, S. Montero, R. Martin, J. Rieumont, J. M. Nieto-Villar. (2014). Rev. Cub. Fis. 31 (2014) 103.

. B. Mar, G. Cocho, R. Mansilla. Insights in Biomed. 2 (2017) 1.

. L. Triana, G. Cocho, R. Mansilla, R., J. M. Nieto-Villar. International Journal of Aging Research. 1(3) (2018) 1.

. J. A. Betancourt-Mar, R. Mansilla, G. Cocho, R. Rodríguez Martín, S. Montero, J. M. Nieto-Villar. MOJ Gerontol Ger. 3(2) (2108) 163.

. “Thermodynamic efficiency loss and scaling behavior of living being across 18 orders of magnitude of mass in a phenomenological theory of irreversible thermodynamics”. J. A. Montemayor-Aldrete, R. F. Márquez-Caballé, M. del Castillo-Mussot and F. Cruz-Peregrino. Sent to publish.

. A. C. Economos. Archives of Gerontology and Geriatrics. 1(1) (1982) 3.

. I. Prigogine. Introduction to thermodynamics of irreversible processes. Interscience, 3rd ed. New York. (1967).

. R. Glaser. Biophysics. Springer-Verlag, New York. (1999).

. I. Aoki. Journal of theoretical biology. 150(2) (1991) 215.

. T. B. Kirkwood, S. N. Austad. Nature. 408(2000) 233.

http://dx.doi.org/10.1038/35041682

. L. Partridge, and D. Gems. Nature. 418 (2002) 921.

http://dx.doi.org/10.1038/418921

. A.A. Feinberg, and A. Widom. IEEE Transactions on Reliability. 49 (2000) 136.

. B. Gompertz. Philos. Trans. R. Soc. Lond. 110 (1820)214.

. S. J. Olshansky, B. A. Carnes, B. A. Demography. 34(1) (1997) 1.

. R. E. Ricklefs and A. Scheuerlein. J. Gerontol Ser A Biol. Sci. Med. Sci. 57A. 2, (2002) B69.

. C. Driver. The Gompertz function does not measure ageing. Biogerontology. 2 (2001) 61. https://doi.org/10.1023/A:1010061019002 502

. R.E. Ricklefs, A. Scheuerlein. Exp Gerontol. 36(4-6) (2001) 845.

. A. Kowald. Biogerontology. 3 (2002) 187.

https://doi.org/10.1023/A:1015659527013

. W. A. Weibull. J. Appl. Mech 1951, 18 (1951) 293.

. B. L. Strehler, A. S. Mildvan. Science 132 (1960) 3418.

Available online: https://www.jstor.org/stable/1706138

. Y.V. Pakin, S. M. Hrisanov. Gerontology. 30 (1984) 8. https://doi.org/10.1159/000212600 511

. M. Witten, W. Satzer. Applied mathematics letters. 5(1) (1992) 7.

. K. Suematsu, M. Kohno. Journal of theoretical biology. 201(4) (1999) 231.

. L. A. Gavrilov, N. S. Gavrilova. J. Theor. Biol. 213 (2001) 527.

. H. Pham. Int. j. reliab. Appl. 2002, 3(1) 1.

. A. Golubev. J. theor. Biol. 25 (2009) 1.

. M. Pitchaimania, T. Eakinb. Math Comput Model. 47(2008) 104.

. C. Darwin, E. Mayr (1964). On the Origin of Species: A Facsimile of the 1st Ed. (1859) with an Introduction by Ernst Mayr. Harvard University Press.

. J. Peretó, J. L. Bada, A. Lazcano. Origins of life and evolution of biospheres. 39(5) (2009) 395.

. A. I. Oparin. The origin of life on the earth. Published 1957 by Academic Press in New York (3rd Ed).

https://archive.org/details/originoflifeonea00opar/mode/2up

. A. Lazcano-Araujo, El origen de la vida: evolución química y evolución biológica. 3ª edición. Ed. Trillas. (2014).

. G. Martínez-Mekler, M. Aldana, F. Cázarez-Bush, R. Garcia-Pelayo, G. Cocho. Origins of Life and Evolution of the Biosphere. 29(2) (1999) 203.

. A. Lazcano, A. (2010). Historical development of origins research. Cold Spring Harbor perspectives in biology, 2(11), a002089.

. J. Oro. Journal of biological physics. 20(1-4) (1995) 135.

. V. A. Basiuk, R. Navarro-Gonzalez. Origins of Life and Evolution of the Biosphere. 25(5) (1995) 457.

. J. D. Carrillo‐Sánchez, D. Nesvorný, P. Pokorný, D. Janches, J. M. C. Plane. Geophysical research letters. 43(23) (2016) 11979.

. J. M. Plane. Chemical Society Reviews, 41(19) (2012) 6507.

. S. G. Love, D. E. Brownlee. Science, 262(5133) (1993) 550.

. P. L. Luisi, P. Walde, T. Oberholzer. Current opinion in colloid & interface science. 4(1) (1999) 33.

. D. Segré, D. Ben-Eli, D. W. Deamer, D. Lancet. Origins of Life and Evolution of the Biosphere. 31(1-2) (2001) 119.

. E. Szathmáry. Philosophical Transactions of the Royal Society B: Biological Sciences. 361(1474), (2006) 1761.

. R. V. Sole. The international journal of biochemistry & cell biology. 41(2) (2009) 274.

. Y. H. Itoh, A. Sugai, I. Uda, T. Itoh. Advances in Space Research. 28(4) (2001) 719.

. G. A. M. King. Biosystems. 15(2) (1982) 89.

. A. Lazcano, S. L. Miller. Journal of Molecular Evolution. 39(6) (1994) 546.

. A. Lazcano, S. L. Miller. Journal of Molecular Evolution. 49(4) (1999) 424.

. J. P. Dworkin, A. Lazcano, S. L. Miller. Journal of Theoretical Biology. 222(1) (2003) 127.

. G. F. Joyce. Nature. 418(6894) (2002) 214.

. M. P. Robertson, G. F. Joyce. Cold Spring Harbor perspectives in biology, 4(5) (2012) a003608.

. P. G. Higgs, N. Lehman. Nature Reviews Genetics. 16(1), (2015) 7.

. L. E. Orgel. Trends in biochemical sciences. 23(12) (1998) 491.

. L. E. Orgel. Critical reviews in biochemistry and molecular biology. 39(2) (2004) 99.

. D. C. Jeffares, A. M. Poole, D. Penny. Journal of Molecular Evolution. 46(1) (1998) 18.

. J. R. Thomas, P. J. Hergenrother. Chemical reviews. 108(4) (2008) 1171.

. L. L. Chen. Nature reviews Molecular cell biology. 17(4) (2016) 205.

. W, R. Jeck, N. E. Sharpless. Nature biotechnology. 32(5) (2014) 453.

. A. C. Arnberg, G. J. Van Ommen, L. A. Grivell, E. F. J. Van Bruggen, P. Borst. (1980). Cell. 19(2) (1980) 313.

. N. Abe, K. Matsumoto, M. Nishihara, Y. Nakano, A. Shibata, H. Maruyama, H. Abe. (2015). Scientific reports, 5, (2015)16435.

. C. Denis, K. R. Rybicki, A. A. Schreider, S. Tomecka‐Suchoń, P. Varga. Astronomische Nachrichten, 332(1) (2011) 24.

. L. P. Knauth, D. R. Lowe. Geological Society of America Bulletin. 115(5) (2003) 566.

. L. R. Kump. Nature. 451(7176) (2008) 277.

. B. K. Pierson, H. K. Mitchell, A. L. Ruff-Roberts. Origins of Life and Evolution of the Biosphere. 23(4) (1993) 243.

. J. Oro, J. and A. P. Kimball. Arch. Biochem. Biophys.94 (1961) 217.

. J. Heinz, D. Schulze-Makuch. Astrobiology. 20(4) (2020) 552.

. N. P. Kamat, S. Tobé, I. T. Hill, J. W. Szostak. Angewandte Chemie International Edition. 54(40) (2015) 11735.

. K. Michaelian. Journal of Modern Physics. 2(06) (2011) 595.

. N. Kitadai, S. Maruyama.. Geoscience Frontiers. 9(4) (2018) 1117.

. N. P. Kamat, S. Tobé, I. T. Hill, J. W. Szostak. Angewandte Chemie International Edition. 54(40) (2015) 11735.

. L. D. Landau, E. M. Lifshitz. Quantum Mechanics (Pergamon Press, Oxford, 1965).

. R. D. Larsen. Journal of Chemical Education. 62 (3) (1985) 199.

. S.C. Taylor, J. Animal Sci. 61(Supplement 2) (1985) 118.

Downloads

Published

2020-10-07

How to Cite

1.
Montemayor-Aldrete JA, Márquez-Caballé RF. General thermodynamic efficiency loss, aging and Gompertz mortality law. Supl. Rev. Mex. Fis. [Internet]. 2020 Oct. 7 [cited 2025 Jan. 15];1(4):59-66. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5240