The nonlinear optical loop mirror: soliton and noise-like pulse emission in a figure-eight fiber laser

Authors

  • A. Camarillo-Avilés Instituto de Investigación en Comunicación Óptica - Universidad Autónoma de San Luis Potosí
  • E. Hernández-Escobar Instituto de Investigación en Comunicación Óptica - Universidad Autónoma de San Luis Potosí
  • R. López-Estopíer Instituto de Investigación en Comunicación Óptca - Universidad Autónoma de San Luis Potosí. Consejo Nacional de Ciencia y Tecnología (CONACYT).
  • M. Bello-Jiménez Instituto de Investigación en Comunicación Óptica - Universidad Autónoma de San Luis Potosí
  • O. Pottiez Centro de Investigaciones en Óptica
  • B. Ibarra- Escamilla Instituto Nacional de Astrofísica, Óptica y Electrónica.
  • M. Duran-Sánchez Consejo Nacional de Ciencia y Tecnología (CONACYT). Instituto Nacional de Astrofísica, Óptica y Electrónica.
  • M. V. Andrés Universidad de Valencia

DOI:

https://doi.org/10.31349/SuplRevMexFis.2.1.54

Keywords:

Erbium doped fiber, soliton pulse, noise-like pulse, nonlinear optical loop mirror, fiber lasers

Abstract

In this article, a symmetrical nonlinear optical loop mirror (NOLM) exhibiting a polarization-dependent transmission is evaluated to generate optical pulse emission in a figure-eight fiber laser in the soliton and noise-like pulse (NLP) regimes. The NOLM structure relies on a 50:50 fiber coupler, a loop with highly twisted single-mode optical fiber and a quarter-wave retarder (QWR) to break the polarization asymmetry. The pulse operation regime is determined by properly adjusting the NOLM low-power transmission, which is easily realized by the rotation of the QWR angle. Soliton pulses of 1.48 ps pulse duration and peak power of 18 W were observed with a peak to peak separation of 1.25 µs, corresponding to a fundamental cavity repetition rate of 0.8 MHz. Moreover, by incrementing the NOLM low-power transmission, NLP emission is generated exhibiting a wide and smooth spectrum of 8.5 nm bandwidth.

References

Xin Zou, Jifang Qiu, Xiaodong Wang, Zi Ye, Jindan Shi, and Jian Wu, "Versatile mode-locked fiber laser with switchable operation states of bound solitons," Appl. Opt. 55 (2016) 4323, https://doi.org/10.1364/AO.55.004323.

Ai-Ping Luo, Zhi-Chao Luo, Hao Liu, Xu-Wu Zheng, Qiu-Yi Ning, Nian Zhao, Wei-Cheng Chen, and Wen-Cheng Xu, "Noise-like pulse trapping in a figure-eight fiber laser," Opt. Express 23 (2015) 10421, https://doi.org/10.1364/OE.23.010421.

Jan Szczepanek, Tomasz M. Kardás, Maria Michalska, Czesław Radzewicz, and Yuriy Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Letters 40 (2015) 3500, https://doi.org/10.1364/OL.40.003500.

Jianfeng Li, Zhijun Yan, Zhongyuan Sun, Hongyu Luo, Yulian He, Zhuo Li, Yong Liu, and Lin Zhang, "Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating," Opt. Express 22 (2014) 31020, https://doi.org/10.1364/OE.22.031020.

Sheng-Fong Lin, Huai-Yung Wang, Yu-Chuan Su, Yu-Chieh Chi and Gong-Ru Lin, “Multi-order bunched soliton pulse generation by nonlinear polarization rotation mode-locking erbium-doped fiber lasers with weak or strong polarization-dependent loss,” Laser Phys. 24 (2014) 1, https://doi.org/10.1088/1054-660X/24/10/105113.

Zhi-Chao Luo, Qiu-Yi Ning, Hai-Lan Mo, Hu Cui, Jin Liu, Li-Jun Wu, Ai-Ping Luo, and Wen-Cheng Xu, "Vector dissipative soliton resonance in a fiber laser," Opt. Express 21 (2013) 10199, https://doi.org/10.1364/OE.21.010199.

I. N. Duling III, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16 (1991) 539, https://doi.org/10.1364/OL.16.000539.

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18 (1993) 358, https://doi.org/10.1364/OL.18.000358.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78 (2008) 023830, https://doi.org/10.1103/PhysRevA.78.023830.

Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27 (2010) 2336, https://doi.org/10.1364/JOSAB.27.002336.

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17 (2009) 5580, https://doi.org/10.1364/OE.17.005580.

X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35 (2010) 3249, https://doi.org/10.1364/OL.35.003249.

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37 (2012) 4777, https://doi.org/10.1364/OL.37.004777.

B. A. Malomed, “Bound solitons in the nonlinear Schrodinger–Ginzburg–Landau equation,” Phys. Rev. A, Mol. Opt. Phys. 44 (1991), 6954, https://doi.org/10.1007/3-540-54899-8_48.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64 (2001) 033814, https://doi.org/10.1103/PhysRevA.64.033814.

P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27 (2002) 966, https://doi.org/10.1364/OL.27.000966.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36 (2011) 1545, https://doi.org/10.1364/OL.36.001545.

F. Amrani, M. Salhi, H. Leblond, A. Haboucha, and F. Sanchez, “Intricate solitons state in passively modelocked fiber lasers,” Opt. Express 19 (2011) 13134, https://doi.org/10.1364/OE.19.013134.

M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22 (1997) 799, https://doi.org/10.1364/OL.22.000799.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ringcavity configurations,” Opt. Fiber Technol. 20 (2014) 575, https://doi.org/10.1016/j.yofte.2014.07.004.

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17 (2009) 20707, https://doi.org/10.1364/OE.17.020707.

O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. Hernández-García, “Adjustable noiselike pulses from a figure-eight fiber laser,” Appl. Opt. 50 (2011) E24. https://doi.org/10.1364/AO.50.000E24.

R. Ulrich, A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Optics 18 (1979) 2241, https://doi.org/10.1364/AO.18.002241.

T. Tanemura, K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24 (2006) 4108, https://doi.org/10.1109/JLT.2006.883641.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Mendez-Martinez, “Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias,” Opt. Commun. 254 (2005) 152, https://doi.org/10.1016/j.optcom.2005.05.015.

B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Moran, R. Grajales-Coutiño, F. Mendez-Martinez, O. Pottiez, R. Rojas-Laguna, and J. W. Haus, “Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias,” Opt. Express 13 (2005) 10760, https://doi.org/10.1364/OPEX.13.010760.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28 (1992) 806, https://doi.org/10.1049/el:19920508.

Downloads

Published

2021-03-31

How to Cite

1.
Camarillo-Avilés A, Hernández-Escobar E, López-Estopíer R, Bello-Jiménez M, Pottiez O, Ibarra- Escamilla B, Duran-Sánchez M, Andrés MV. The nonlinear optical loop mirror: soliton and noise-like pulse emission in a figure-eight fiber laser. Supl. Rev. Mex. Fis. [Internet]. 2021 Mar. 31 [cited 2024 Dec. 18];2(1 Jan-Mar):54-9. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5600