Fiber optic system to measure adulteration in liquids using an RGB detection

Authors

  • O. X. Vera-Duarte Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • J. D Filoteo-Razo Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • J. M. Estudillo-Ayala Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • J. C. Hernandez-Garcia CONACYT. catedratico CONACYT, Av. Insurgentes Sur No. 1582, Cre ́dito Constructor, Benito Juarez, 39040, Mexico.
  • D. Jauregui-Vazquez Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • J. M. Sierra-Hernandez Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • J. R. Martinez-Angulo Universidad Autonoma de Tamaulipas, Facultad de Ingenierıa y Ciencias, Ciudad Victoria, Tamaulipas,87149, Mexico.
  • J. A. Martin-Vela Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca
  • R. Rojas-Laguna Universidad de Guanajuato Division de Ingenierias, Campus Irapuato-Salamanca

DOI:

https://doi.org/10.31349.SuplRevMexFis.2.1.98

Keywords:

Fiber optic, refractive index, sensor, RGB color

Abstract

In this paper, we propose a fiber optic system to measure the changes in the RGB composition of light in liquid solutions using a plastic optical fiber (POF) as an intrinsic sensor. The measurement system is composed of a 3 W white light-emitting diode as the light source, a 20 cm long U-shaped POF, and an RGB photodiode array that allows us to detect the changes in the RGB composition of the light propagating through the POF. The U-shaped POF has a length of 5 mm without coating, which remains in contact with the liquid solutions. The tests were performed with different concentrations of a mixture of tequila and water. The results obtained with the RGB photodiode array showed that the system has a resolution of 0.39 % and a color change sensitivity of 0.1, 0.6, and 0.4 8–bits/% of sample for red, green, and blue colors, respectively. These results will allow us to design a low-cost prototype to measure the amount of adulteration in liquids.

References

C. Vazquez, A.B. Gonzalo, S. Vargas and J. Montalvo, Multi- sensor system using plastic optical fibers for intrinsically safe level measurements, Sensors Actuators A Phys. 116 (2004) 22, https://doi.org/10.1016/j.sna.2004.03.035.

K.T.V. Grattan and T. Sun, Fiber optic sensor technology: An overview, Sensors Actuators A Phys. 82 (2000) 40, https: //doi.org/10.1016/S0924-4247(99)00368-4.

L. Bilro, N. Alberto, J.L. Pinto and R. Nogueira, Optical sen- sors based on plastic fibers, Sensors (Switzerland) 12 (2012) 2184, https://doi.org/10.3390/s120912184.

M. Yunus and A. Arifin, Design of Oil Viscosity Sensor Based on Plastic Optical Fiber, J. Phys. Conf. Ser. 979 (2018) 012083, https://doi.org/10.1088/1742-6596/979/1/ 012083.

J. D. Filoteo-Razo, J. M. Estudillo-Ayala, J. C. Herna ́ndez- Garc ́ıa, M. Trejo-Dura ́n, A. Mun ̃oz-Lopez, D. Jauregui- Va ́zquez and R. Rojas-Laguna, RGB color sensor implemented with LEDs, Proc. SPIE - Int. Soc. Opt. Eng. (2015), https: //doi.org/10.1117/12.2188243.

J. Zubia and J. Arrue, Plastic optical fibers: An introduction to their technological processes and applications, Opt. Fiber Tech- nol. 7 (2001) 101, https://doi.org/10.1006/ofte. 2000.0355.

J. D. Filoteo-Razo, J. M. Estudillo-Ayala, J. C. Herna ́ndez- Garc ́ıa, D. Ja ́uregui-Va ́zquez, R. Rojas-Laguna, F.J. Valle- AtilanoandL.F.Sa ́mano-Aguilar,SensorRGBparadetectar cambios de color en piel de frutas, Acta Univ. 26 (2016) 24, https://doi.org/10.15174/au.2016.859.

Y.S. Ong, E. Lewis, I. Grout and W. Mohammed, Results Clas- sification in an RGB LED Based Optical Fiber Sensor Sys- tem using Python, 2018 15th Int. Conf. Electr. Eng. Com- put. Telecommun. Inf. Technol., IEEE (2018) 33-36, https: //doi.org/10.1109/ECTICon.2018.8619985.

C. Novo, L. Bilro, R. Ferreira, N. Alberto, P. Antunes, C. Leita ̃o, R. Nogueir and J.L. Pinto, Plastic optical fibre sensor for quality control in food industry, Fifth Eur. Work. Opt. Fibre Sensors, International Society for Optics and Photonics (2013) 879411, https://doi.org/10.1117/12.2025489.

D. Lopez-Betancur, I. Moreno, C. Guerrero-Mendez, D. Go ́mez-Mele ́ndez, M. de J. Macias P and C. Olvera-Olvera, Ef- fects of Colored Light on Growth and Nutritional Composition of Tilapia, and Biofloc as a Food Source, Appl. Sci.10 (2020) 362, https://doi.org/10.3390/app10010362.

A. Arifin, Yusran, Miftahuddin, B. Abdullah and D. Tahir, Comparison of sensitivity and resolution load sensor at vari- ous configuration polymer optical fiber, AIP Conf. Proc., Amer- ican Institute of Physics Inc. (2017), https://doi.org/ 10.1063/1.4973100.

F. Berghmans and H. Thienpont, Plastic optical fibers for sensing applications, Conf. Opt. Fiber Commun. Tech. Dig. Ser. (2014), https://doi.org/10.1109/OFC.2014. 6886975.

D.-S. Lee, M.Y. Jung, B.G. Jeon and M.-J. Sohn, Novel opti- cal absorbance-based multi-analytes detection module using a tri-chromatic LED, PDs and plastic optical fibers and its ap- plication to a palm-sized urine test strip reader, Sensors 2010 IEEE (2010) 1411-1414, https://doi.org/10.1109/ ICSENS.2010.5690509.

D.Z. Stupar, J.S. Bajic, A. V Joza, B.M. Dakic, M.P. Slankamenac, M.B. Zivanov and E. Cibula, Remote moni-toring of water salinity by using side-polished fiber-optic U- shaped sensor, 2012 15th Int. Power Electron. Motion Con- trol Conf., IEEE (2012), LS4c-4, https://doi.org/10. 1109/EPEPEMC.2012.6397458.

O.Ziemann,J.Krauser,P.E.ZamzowandW.Daum,POFhand- book, Springer (2008), LS4c-4, https://doi.org/10. 1007/978-3-540-76629-2.

I. Speier and M. Salsbury, Color temperature tunable white light LED system, Sixth Int. Conf. Solid State Light., Inter- national Society for Optics and Photonics (2006), 63371F, https://doi.org/10.1117/12.679688.

Downloads

Published

2021-06-24 — Updated on 2021-07-06

Versions

Issue

Section

FÍSICA DE FIBRAS ÓPTICAS EN MÉXICO, EN MEMORIA DEL DR. EVGENY A. KUZIN