Impact of higher-order optical fiber modes for photon-triplet generation

Authors

  • K. Garay-Palmett Centro de Investigación Científica y de Educación Superior de Ensenada
  • F. Domínguez-Serna Catedras Conacyt, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, B.C., 22860, Mexico.

DOI:

https://doi.org/10.31349/SuplRevMexFis.2.1.72

Keywords:

Three-photon states, Quantum Optics, Optical Fibers

Abstract

This paper presents a study of the phasematching properties of the third-order parametric down-conversion process in multimode optical fibers with a step-index profile. Through this process, entangled photon triplets can be generated in the spontaneous regime. We show that phasematching is achieved in a wide range of fiber geometries, provided that the pump field propagates in a higher-order mode. Furthermore, we show the nonlinear coefficient and the absolute emitted flux for each source configuration, evaluated from expressions derived by us in previous theoretical studies concerning the spontaneous and stimulated emission regimes.

References

D. C. Burnham and D. L. Weinberg, ``Observation of simultaneity in parametric production of optical photon pairs,'' Phys. Rev. Lett. textbf {25}, 84 (1970).

A. Zeilinger, ``Experiment and the foundations of quantum physics,'' Rev. Mod. Phys. textbf {71}, S288 (1999).

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, ``Linear optical quantum computing with photonic qubits,'' Rev. Mod. Phys. textbf {79}, 135 (2007).

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar,

``All-fiber photon-pair source for quantum communications,'' IEEE Photon.

Technol. Lett. textbf{ 14}, 983--985 (2002).

W. P. Grice, A. B. U'Ren and I. A. Walmsley, ``Eliminating

frequency and space-time correlations in multiphoton states,'' Phys. Rev. A

textbf{64}, 063815 (2001).

K. Garay-Palmett, H. J. McGuinness, Offir Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U'ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, ``Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,'' Opt. Express textbf{15}, 14870 (2007).

H. H"ubel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch and T. Jennewein, ``Direct generation of photon triplets using cascaded photon-pair sources,'' Nature textbf{466}, 601 (2010).

M. Corona, K. Garay-Palmett, and A. B. U'Ren, ``Experimental proposal for the generation of

entangled photon triplets by third-order spontaneous parametric

downconversion in optical fibers,'' Opt. Lett. textbf{36}, 190--192

(2011).

K. Garay-Palmett, M. Corona, and A. B. U?Ren, ``Spontaneous parametric processes in optical fibers: a comparison," Rev. Mex. Fís. textbf{57}, 6--14 (2011).

C. Okoth, A. Cavanna, N. Y. Joly, and M. V. Chekhova, ``Seeded and unseeded high-order parametric down-conversion," Phys. Rev. A textbf{99}, 1--11 (2019).

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, ``Quantum theory analysis of triple photons generated by a $chi^{(3)}$ process," Phys. Rev. A textbf{85}, 023809 (2012).

F. Gravier and B. Boulanger, ``Triple-photon generation: comparison between theory and experiment," J. Opt. Soc. Am. B textbf{25}, 98 (2008).

J. Douady and B. Boulanger, ``Experimental demonstration of a pure third-order optical parametric downconversion process," Opt. Lett. textbf{29}, 2794 (2004).

F. Domínguez-Serna, A. B. U'Ren, and K. Garay-Palmett ``Third-order parametric down-conversion: A stimulated approach,'' Phys. Rev. A textbf{101}, 033813 (2020).

A. Cavanna, J. Hammer, C. Okoth, E. Ortiz-Ricardo, H. Cruz-Ramírez, K. Garay-Palmett, A. B. URen, M. H. Frosz, X. Jiang, N. Joly, and M. V. Chekhova ``Progress toward third-order parametric-downconversion in optical fibers,'' Phys. Rev. A textbf{101}, 033840 (2020).

S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, ``Semiclassical model of triple photons generation in optical fibers,'' Opt. Lett. textbf{36}, 3000--3002 (2011).

M. Corona, K. Garay-Palmett, and A. B. U'Ren, ``Third-order spontaneous parametric down-conversion in thin optical fibers

as a photon-triplet source,'' Phys. Rev A textbf{84}, 033823 (2011).

W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, ``Selective launching of higher-order modes into an optical fiber with an optical phase shifter,'' Opt. Lett. textbf{19}, 454--456 (1994).

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, ``Anomalous dispersion in a solid, silica-based fiber,'' Opt. Lett. textbf{31}, 2532--2534 (2006).

K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, ``Wavelength-independent all-fiber mode converters,'' Opt. Lett. textbf{32}, 328--330 (2007).

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. S. J.

Russell, ``Dynamic control of higher-order modes in hollow-core photonic crystal fibers,'' Opt. Express textbf{16}, 17972--17981 (2008) .

J. M. Harbold, F. ''{O}. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, ``Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. textbf{27}, 119--121 (2002) .

Downloads

Published

2021-03-31

How to Cite

1.
Garay-Palmett K, Domínguez-Serna F. Impact of higher-order optical fiber modes for photon-triplet generation. Supl. Rev. Mex. Fis. [Internet]. 2021 Mar. 31 [cited 2025 Jan. 15];2(1 Jan-Mar):72-80. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5639