Transport and concentration of uranium isotopes in the Laguna del Cuervo, Chihuahua, Mexico

Authors

  • Victoria Pérez-Reyes Centro de Investigación en Materiales Avanzados
  • Rocío Magaly Cabral-Lares Centro de Investigación en Materiales Avanzados
  • Carmen Grisel Méndez-García
  • Carmen del Rocío Caraveo-Castro CÁTEDRAS-CONACYT Instituto de Física de la UNAM
  • Ignacio Alfonso Reyes-Cortés Facultad de Ingeniería, Universidad Autónoma de Chihuahua
  • Jorge Carrillo-Flores Centro de Investigación en Materiales Avanzados
  • María Elena Montero-Cabrera Centro de Investigación en Materiales Avanzados https://orcid.org/0000-0002-1906-0105

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.010606

Keywords:

Pena Blanca, uranium, sediment, liquid scintillation

Abstract

In Chihuahua, an important source of environmental radioactivity is found in the Sierra Peña Blanca, in the center of the state. The site comprises about 70% of uranium reserves in Mexico. The uranium of Peña Blanca was explored and partially exploited in the '80s. Due to the closure of operations, the extracted and unprocessed ore (hundreds of tons) was confined to rocky stacks, exposed to weathering. Subject to leaching, this uranium is transported from the mountains to Laguna del Cuervo. The mineral exposed in the repository and the uranium transport by surface water and recent sediments must be studied, to assess the effects on the environment, with radiometric and materials science techniques in conventional laboratories and synchrotron light. This work presents the study of sediment and pore water samples at various points along the lagoon, and the values of the activity ratio of the 234U/238U isotopes and the sediment-water distribution coefficient of these isotopes, obtained by applying uranium liquid scintillation alpha spectrometry, gamma-ray spectrometry, scanning electron microscopy and X-ray diffraction methods.

References

Consejo de Recursos Minerales, Monografía Geológico-Minera del Estado de Chihuahua, (Secretaría de Energía, Minas e Industria Paraestatal, Subsecretaría de Minas e Industria Básica, 1994) pp. 297. ISBN 9686710388, 9789686710380.

J. Villareal-Fuentes, G. Levresse, R. Corona-Esquivel, J. Tritlla, N. Piedad-Sánchez, Principales Anomalías de Uranio en México, AIMMGM (2011) 260. ISBN 978-607-95292-2-2.

P.C. Goodell, Geology of Pena Blanca uranium deposits, Chihuahua, Mexico, Uranium in volcanic and volcaniclastic rocks. AAPG Stud. Geol. 13 (1981) 275.

O. M. Munguía, Explicación genética y evaluación geoestadística del depósito de uranio Coneto-Buenavista, Mpio. de Rodeo, estado de Durango, Universidad Nacional Autonóma de México, (2005) 180.

Comisión Nacional del Agua, Actualización de la disponibilidad media anual de agua en el acuífero Laguna de Hormigas (0824), Estado de Chihuahua, (Comisión Nacional del Agua, 2015) pp. 1-7.

B. Bourdon, Introduction to U-series Geochemistry, Uranium Series Geochemistry: Reviews in Mineralogy and Geochemistry (Mineralogical Society of America), 52 (2003) 1, https://doi.org/10.2113/0520001

A. Kumar et al., Activity ratios of 234U/238U and 226Ra/228Ra for transport mechanisms of elevated uranium in alluvial aquifers of groundwater in south-western (SW) Punjab, India, Journal of Environmental Radioactivity 151 (2016) 311, https://doi.org/10.1016/j. jenvrad.2015.10.020.

F. Chabaux, J. Riotte, O. Dequincey, U-Th-Ra Fractionation During Weathering and River Transport, Uranium Series Geochemistry: Reviews in Mineralogy and Geochemistry (Mineralogical Society of America) 52 (2003) 533, https://doi.org/10.2113/0520533.

UNSCEAR, Report to the General Assembly with Scientific Annexes (United Nations Publication, NY, 2000), pp 157-291. ISBN 92-1-142238-8.

J. Rodríguez-Carbajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192 (1993) 55, https://doi.org/10.1016/0921-4526(93)90108-I

G. Gilmore, Practical Gamma-ray Spectrometry 2nd ed (Chichester: John Wiley & Sons, Ltd, Warrington, UK, 2008), pp. 319-322. ISBN 978-0-470-86196-7

I. Jarvis, K. Jarvis, Plasma spectrometry in the earth sciences: techniques, applications, and future trends, Chemical Geology 95 (1992) 1, https://doi.org/10.1016/0009-2541(92)90041-3

D. Skoog, J. Holler, S. Crouch, Principios de análisis instrumental 6ta ed, (Cengage Learning Editores, Mexico, 2008), pp. 909-925. ISBN 0-495-01201-7.

N. Tsoulfanidis, S. Landsberger, Measurement & Detection of Radiation 4th ed (CRC Press, Boca Raton, 2015), pp. 195-216. ISBN 978-1-4822-1548-9.

S. Cumberland, G. Douglas, K. Grice, J. Moreau, Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes, Earth-Science Reviews, 159 (2016) 160, https://doi.org/10.1016/j. earscirev.2016.05.010.

B.D. Stewart et al., Influence of Uranyl Speciation and Iron Oxides on Uranium Biogeochemical Redox Reactions. Geomicrobiology Journal 28 (2011) 444 https://doi.org/10.1080/01490451.2010.507646.

J. Wan et al., Effects of Organic Carbon Supply Rates on Uranium Mobility in a Previously Bioreduced Contaminated Sediment. Environmental Science & Technology 42 (2008) 7573. https://doi.org/10.1021/es800951h.

M. Newville, Fundamentals of XAFS, Reviews in Mineralogy & Geochemistry, 78 (2014) 33 https://doi.org/10.2138/rmg.2014.78.2.

A. M. Beesley et al., Evolution of chemical species during electrodeposition of uranium for alpha spectrometry by the Hallstadius method, 67 (2009) 1559 https://doi.org/10.1016/j.apradiso.2009.03.031.

Downloads

Published

2022-06-24

How to Cite

1.
Pérez-Reyes V, Cabral-Lares RM, Méndez-García CG, Caraveo-Castro C del R, Reyes-Cortés IA, Carrillo-Flores J, Montero-Cabrera ME. Transport and concentration of uranium isotopes in the Laguna del Cuervo, Chihuahua, Mexico. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 24 [cited 2022 Aug. 12];3(1):010606 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5979

Issue

Section

06 I National Congress of the Mexican Society of Synchrotron Light