A short review of the Casimir effect with emphasis on dynamical boundary conditions


  • Benito Alberto Juárez Aubry Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM
  • Ricardo Weder Universidad Nacional Autónoma de México https://orcid.org/0000-0003-3993-4698




Casimir effect, Dynamical boundary conditions, Boundary eigenvalue problems


We give a short review on the static and dynamical Casimir effects, recalling their historical prediction, as well as their more recent experimental verifications. We emphasise on the central role played by so-called dynamical boundary conditions (for which the boundary condition depends on a second time derivative of the field) in the experimental verification of the dynamical Casimir effect by Wilson et al. We then go on to review our previous work on the static Casimir effect with dynamical boundary conditions, providing an overview on how to compute the so-called local Casimir energy, the total Casimir energy and the Casimir force. We give as a future perspective the direction in which this work should be generalised to put the theoretical predictions of the dynamical Casimir effect experiments on a rigorous footing.


H. B. G. Casimir and D. Polder, “The Influence of retardation on the London-van der Waals forces”, Phys. Rev. 73 (1948) 360,


H. B. G. Casimir, On the Attraction Between Two Perfectly Conducting Plates,” Proc. K. Ned. Akad. Wet. B (1948) 51 793-795.

M. Bordag, G. L. Klimchitskaya, U. Mohideen and V. M. Mostepanenko, Advances in the Casimir effect (Oxford University Press, 2009).

K. A. Milton, The Casimir Effect (World Scientific, 2001).

D. Deutsch and P. Candelas, Boundary Effects in Quantum Field Theory”, Phys. Rev. D 20 (1979) 3063, https://doi.org/10.1103/PhysRevD.20.3063.

B. S. Kay, Casimir effect in quantum field theory”, Phys. Rev. D 20 (1979) 3052, https://doi.org/10.1103/PhysRevD.20.3052.

S. K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 micrometers range”, Phys. Rev. Lett. 78 (1997) 5, [erratum:

Phys. Rev. Lett. 81 (1998) 5475, https://doi.org/10.1103/PhysRevLett.81.5475.] https://doi.org/10.1103/PhysRevLett.78.5.

G. Bressi, G. Carugno, R. Onofrio and G. Ruoso, Measurement of the Casimir force between parallel metallic surfaces”, Phys. Rev. Lett. 88 (2002) 041804, https://doi.org/10.1103/PhysRevLett.88.041804.

V. V. Dodonov, Fifty Years of the Dynamical Casimir Effect”, MDPI Physics 2 (2020) 67, https://doi.org/10.3390/physics2010007.

G. T. Moore, Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity”, J. Math. Phys. 11 (1970) 2679, https://doi.org/10.1063/1.1665432.

P. C. W. Davies and S. A. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly”, Proc. Roy. Soc. Lond. A 348 (1976) 393,

C. Barcelo, S. Liberati and M. Visser, Analogue gravity”, Living Rev. Rel. 8 (2005) 12 https://doi.org/10.12942/lrr-2005-12.[arXiv:gr-qc/0505065 [gr-qc]].

B. A. Juárez-Aubry and J. Louko, Quantum fields during black hole formation: How good an approximation is the Unruh state?”, JHEP 05 (2018) 140, https://doi.org/10.1007/JHEP05(2018)140. [arXiv:1804.01228 [gr-qc]].

B. A. Juárez-Aubry and J. Louko, Onset and decay of the 1 + 1 Hawking-Unruh effect: what the derivative-coupling detector saw”, Class. Quant. Grav. 31 (2014) 245007, https://doi.org/10.1088/0264-9381/31/24/245007.[arXiv:1406.2574 [gr-qc]].

M. R. R. Good, P. R. Anderson and C. R. Evans, Mirror Reflections of a Black Hole”, Phys. Rev. D 94 (2016) 065010, https://doi.org/10.1103/PhysRevD.94.065010. [arXiv:1605.06635 [gr-qc]].

M. R. R. Good, J. Foo and E. V. Linder, Accelerating boundary analog of a Kerr black hole”, Class. Quant. Grav. 38 (2021) 085011, https://doi.org/10.1088/1361-6382/abebb6. [arXiv:2006.01349 [gr-qc]].

N. Friis, D. E. Bruschi, J. Louko and I. Fuentes, Motion generates entanglement”, Phys. Rev. D 85 (2012) 081701, https://doi.org/10.1103/PhysRevD.85.081701. [arXiv:1201.0549 [quant-ph]].

L. C. Barbado, A. L. Baez-Camargo and I. Fuentes, Evolution of confined quantum scalar fields in curved spacetime. Part I: Spacetimes without boundaries or with static boundaries in a synchronous gauge”, Eur. Phys. J. C 80 (2020) 796, https://doi.org/10.1140/epjc/s10052-020-8369-9. [arXiv:1811.10507 [quant-ph]].

L. C. Barbado, A. L. Baez-Camargo and I. Fuentes, Evolution of confined quantum scalar fields in curved spacetime. Part II: Spacetimes with moving boundaries in any synchronous gauge”, Eur. Phys. J. C 81 (2021) 953, https://doi.org/10.1140/epjc/s10052-021-09737-x.[arXiv:2106.14923 [quant-ph]].

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Nature, 479 (2011) 376, https://doi.org/10.1038/nature10561.

P. Lähteenmaki, G. S. Paraoanu, J. Hassel and P. J. Hakonen, Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci 110 (2013) 11, https://doi.org/10.1073/pnas.1212705110.

W. J. Kim, J. H. Brownell and R. Onofrio, Detectability of dissipative motion in quantum vacuum via superradiance”, Phys. Rev. Lett. 96 (2006) 200402, https://doi.org/10.1103/PhysRevLett.96.200402.

J. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, Dynamical Casimir Effect in a Superconducting Coplanar Waveguide”, Phys. Rev. Lett. 103 (2009) 147003, https://doi.org/10.1103/PhysRevLett.103.147003.[arXiv:0906.3127 [cond-mat.supr-con]].

D. A. R. Dalvit, Shaking photons out of the vacuum, Nature 479 (2011) 303, https://doi.org/10.1038/479303a.

R. Mennicken, and M. Moller, ¨ Non-Selfadjoint Boundary Value Problems (North Holland Elsevier, 2003).

J. F. Barbero G., B. A. Juárez-Aubry, J. Margalef-Bentabol and E. J. S. Villaseñor, Quantization of scalar fields coupled to point-masses”, Class. Quant. Grav. 32 (2015) 245009, https://doi.org/10.1088/0264-9381/32/24/245009. [arXiv:1501.05114 [math-ph]].

J. F. Barbero G., B. A. Juárez-Aubry, J. Margalef-Bentabol and E. J. S. Villaseñor, Boundary Hilbert spaces and trace operators”, Class. Quant. Grav. 34 (2017) 095005, https://doi.org/10.1088/1361-6382/aa65ff. [arXiv:1701.00735[gr-qc]].

C. Dappiaggi, H. R. C. Ferreira and B. A. Juárez-Aubry, Mode solutions for a Klein-Gordon field in anti–de Sitter spacetime with dynamical boundary conditions of Wentzell type”, Phys. Rev. D 97 (2018) 085022, https://doi.org/10.1103/PhysRevD.97.085022.[arXiv:1802.00283 [hep-th]].

D. Karabali and V. P. Nair, Boundary Conditions as Dynamical Fields”, Phys. Rev. D 92 (2015) 125003, https://doi.org/10.1103/PhysRevD.92.125003.[arXiv:1507.03880 [hep-th]].

A. Parra-Rodriguez, E. Rico, E. Solano, and I. L. Egusquiza, Quantum networks in divergence-free circuit QED, Quantum Science and Technology, 3 (2018) 024012, https://doi.org/10.1088/2058-9565/aab1ba.

J. Zahn, Generalized Wentzell boundary conditions and quantum field theory”, Annales Henri Poincare 19 (2018) 163, https://doi.org/10.1007/s00023-017-0629-3.[arXiv:1512.05512 [math-ph]].

B. A. Juárez-Aubry and R. Weder, Quantum field theory with dynamical boundary conditions and the Casimir effect”, in Theoretical physics, wavelets, analysis, genomics: An indisciplinary tribute to Alex Grossmann, edited by P. Flandrin, S. Jaffard, T. Paul and B. Torresani (Springer, to appear) [arXiv:2004.05646 [hep-th]].

B. A. Juárez-Aubry and R. Weder, Quantum field theory with dynamical boundary conditions and the Casimir effect: coherent states”, J. Phys. A 54 (2021) 105203, https://doi.org/10.1088/1751-8121/abdccf. [arXiv:2008.02842[hep-th]].

C. D. Fosco, F. C. Lombardo and F. D. Mazzitelli, Vacuum fluctuations and generalized boundary conditions”, Phys. Rev. D 87 (2013) 105008, https://doi.org/10.1103/PhysRevD.87.105008. [arXiv:1303.6176 [hep-th]].

C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh 77A (1977) 293, https://doi.org/10.1017/S030821050002521X.

S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-time (Cambridge University Press,1989).




How to Cite

Juárez Aubry BA, Weder R. A short review of the Casimir effect with emphasis on dynamical boundary conditions. Supl. Rev. Mex. Fis. [Internet]. 2022 Apr. 5 [cited 2022 Dec. 3];3(2):020714 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6100