Electromagnetic Pion form factor in a deformed background
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308079Keywords:
Deformed string gauge correspondence, AdS/QCD, Electromagnetic Pion form factorAbstract
This work discusses the electromagnetic (EM) pion form factor ($\pi FF$) in a deformed AdS geometry. We consider the conformal dimension of the hadron bulk field defined by the scaling dimension of the $q\,\bar{q}$ operator instead of the twist. We also compute the pion EM radius and compare it with the experimental data, finding a relative error of $2\,\%$.
References
H. M. Choi and C. R. Ji, Conformal symmetry and pion formfactor: Soft and hard contributions, Phys. Rev. D 74 (2006) 093010, https://doi.org/10.1103/PhysRevD.74.093010.
J. Erdmenger, N. Evans, I. Kirsch and Threlfall, Mesons in Gauge/Gravity Duals - A Review, Eur. Phys. J. A 35 (2008) 81-133, https://doi.org/10.1140/epja/i2007-10540-1.
A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005, https://doi.org/10.1103/PhysRevD.74.015005.
H. Boschi-Filho and N. R. F. Braga, QCD / string holographic mapping and glueball mass spectrum, Eur. Phys. J. C 32 (2004) 529-533, https://doi.org/10.1140/epjc/s2003-01526-4.
J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602, https://doi.org/10.1103/PhysRevLett.95.261602.
N. R. F. Braga, M. A. Martin Contreras and S. Diles, Decay constants in soft wall AdS/QCD revisited, Phys. Lett. B 763 (2016) 203-207, https://doi.org/10.1016/j.physletb.2016.10.046.
M. A. Martin Contreras and A. Vega, Nonlinear Regge trajectories with AdS/QCD, Phys. Rev. D 102 (2020) 046007, https://doi.org/10.1103/PhysRevD.102.046007.
H. Forkel, M. Beyer and T. Frederico, Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD, JHEP 07 (2007) 077, https://doi.org/10.1088/1126-6708/2007/07/077.
E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega and H. Boschi-Filho, Hadronic spectra from deformed AdS backgrounds, Chin. Phys. C 44 (2020) 064104, https://doi.org/10.1088/1674-1137/44/6/064104.
E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega and H. Boschi-Filho, Proton structure functions from an AdS/QCD model with a deformed background, Phys. Rev. D 102 (2020) 086004, https://doi.org/10.1103/PhysRevD.102.086004.
T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Dilaton in a soft-wall holographic approach to mesons and baryons, Phys. Rev. D 85 (2012) 076003, https://doi.org/10.1103/PhysRevD.85.076003.
M. A. Martín Contreras, A. Vega and S. Cortés, Light pseudoscalar and axial spectroscopy using AdS/QCD modified soft wall model, Chin. J. Phys. 66 (2020) 715-723, https://doi.org/10.1016/j.cjph.2020.06.018.
P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev. D 78 (2008) 055009, https://doi.org/10.1103/PhysRevD.78.055009.
H. J. Kwee and R. F. Lebed, Pion form-factors in holographic QCD, JHEP 01 (2008) 027, https://doi.org/10.1088/1126-6708/2008/01/027.
S. J. Brodsky and G. F. de Teramond, Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions, Phys. Rev. D 77 (2008) 056007, https://doi.org/10.1103/PhysRevD.77.056007.
M. A. Martin Contreras, E. Folco Capossoli, D. Li, A. Vega and H. Boschi-Filho, Pion form factor from an AdS deformed background.
H. Ackermann, et al., Determination of the Longitudinal and the Transverse Part in pi+ Electroproduction, Nucl. Phys. B 137 (1978) 294-300, https://doi.org/10.1016/0550-3213(78)90523-0.
C. J. Bebek, et al. Electroproduction of single pions at low epsilon and a measurement of the pion form-factor up to q 2 = 10- GeV2 , Phys. Rev. D 17 (1978) 1693, https://doi.org/10.1103/PhysRevD.17.1693.
P. Brauel,et al., Electroproduction of π +n, π −p and K+Λ, K+Σ 0 Final States Above the Resonance Region, Z. Phys. C 3 (1979) 101, https://doi.org/10.1007/BF01443698.
S. R. Amendolia et al. [NA7], A Measurement of the Space - Like Pion Electromagnetic Form-Factor, Nucl. Phys. B 277 (1986) 168, https://doi.org/10.1016/0550-3213(86)90437-2.
T. Horn et al. [Jefferson Lab F(pi)-2], Determination of the Charged Pion Form Factor at Q**2 = 1.60 and 2.45- (GeV/c)**2, Phys. Rev. Lett. 97 (2006) 192001, https://doi.org/10.1103/PhysRevLett.97.192001.
V. Tadevosyan et al. [Jefferson Lab F(pi)], Determination of the pion charge form-factor for Q**2 = 0.60-GeV**2 - 1.60- GeV**2, Phys. Rev. C 75 (2007) 055205, https://doi.org/10.1103/PhysRevC.75.055205.
P. Maris and P. C. Tandy, The pi, K+, and K0 electromagnetic form-factors, Phys. Rev. C 62 (2000) 055204, https://doi.org/10.1103/PhysRevC.62.055204.
C. Shi, K. Bednar, I. C. Cloët and A. Freese, Spatial and Momentum Imaging of the Pion and Kaon, Phys. Rev. D 101 (2020) 074014, https://doi.org/10.1103/PhysRevD.101.074014.
A. P. Bakulev, et al., Pion form-factor in QCD: From nonlocal condensates to NLO analytic perturbation theory, Phys. Rev. D 70 (2004) 033014, [erratum: Phys. Rev. D 70 (2004) 079906], https://doi.org/10.1103/PhysRevD.70.033014.
B. V. Geshkenbein, Pion electromagnetic form-factor in the space - like region and P phase delta(1) in one-dimension (s) of pi pi scattering from the value of the modulus of form-factor in the time - like region., Phys. Rev. D 61 (2000) 033009, https://doi.org/10.1103/PhysRevD.61.033009.
V. A. Nesterenko and A. V. Radyushkin, Sum Rules and Pion Form-Factor in QCD, Phys. Lett. B 115 (1982) 410, https://doi.org/10.1016/0370-2693(82)90528-7.
C. A. B. Bayona, H. Boschi-Filho, M. Ihl and M. A. C. Torres, Pion and Vector Meson Form Factors in the KupersteinSonnenschein holographic model, JHEP 08 (2010) 122, https://doi.org/10.1007/JHEP08(2010)122.
S. J. Brodsky and G. R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett. 31 (1973) 1153-1156, https://doi.org/10.1103/PhysRevLett.31.1153.
P.A. Zyla et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Miguel Angel Martin Contreras, Eduardo Folco Capossoli, Danning Li, Alfredo Vega, Henrique Boschi-Filho (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.