Electromagnetic Pion form factor in a deformed background


  • Miguel Angel Martin Contreras Universidad de Valparaiso
  • Eduardo Folco Capossoli Departamento de Física, Mestrado Profissional em Práticas de Educação Básica, Colégio Pedro II
  • Danning Li Department of Physics and Siyuan Laboratory, Jinan University
  • Alfredo Vega Instituto de Física y Astronomía, Universidad de Valparaíso
  • Henrique Boschi-Filho Instituto de Física, Universidade Federal do Rio de Janeiro




Deformed string gauge correspondence, AdS/QCD, Electromagnetic Pion form factor


This work discusses the electromagnetic (EM) pion form factor ($\pi FF$) in a deformed AdS geometry. We consider the conformal dimension of the hadron bulk field defined by the scaling dimension of the $q\,\bar{q}$ operator instead of the twist. We also compute the pion EM radius and compare it with the experimental data, finding a relative error of $2\,\%$.


H. M. Choi and C. R. Ji, Conformal symmetry and pion formfactor: Soft and hard contributions, Phys. Rev. D 74 (2006) 093010, https://doi.org/10.1103/PhysRevD.74.093010.

J. Erdmenger, N. Evans, I. Kirsch and Threlfall, Mesons in Gauge/Gravity Duals - A Review, Eur. Phys. J. A 35 (2008) 81-133, https://doi.org/10.1140/epja/i2007-10540-1.

A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005, https://doi.org/10.1103/PhysRevD.74.015005.

H. Boschi-Filho and N. R. F. Braga, QCD / string holographic mapping and glueball mass spectrum, Eur. Phys. J. C 32 (2004) 529-533, https://doi.org/10.1140/epjc/s2003-01526-4.

J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602, https://doi.org/10.1103/PhysRevLett.95.261602.

N. R. F. Braga, M. A. Martin Contreras and S. Diles, Decay constants in soft wall AdS/QCD revisited, Phys. Lett. B 763 (2016) 203-207, https://doi.org/10.1016/j.physletb.2016.10.046.

M. A. Martin Contreras and A. Vega, Nonlinear Regge trajectories with AdS/QCD, Phys. Rev. D 102 (2020) 046007, https://doi.org/10.1103/PhysRevD.102.046007.

H. Forkel, M. Beyer and T. Frederico, Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD, JHEP 07 (2007) 077, https://doi.org/10.1088/1126-6708/2007/07/077.

E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega and H. Boschi-Filho, Hadronic spectra from deformed AdS backgrounds, Chin. Phys. C 44 (2020) 064104, https://doi.org/10.1088/1674-1137/44/6/064104.

E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega and H. Boschi-Filho, Proton structure functions from an AdS/QCD model with a deformed background, Phys. Rev. D 102 (2020) 086004, https://doi.org/10.1103/PhysRevD.102.086004.

T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Dilaton in a soft-wall holographic approach to mesons and baryons, Phys. Rev. D 85 (2012) 076003, https://doi.org/10.1103/PhysRevD.85.076003.

M. A. Martín Contreras, A. Vega and S. Cortés, Light pseudoscalar and axial spectroscopy using AdS/QCD modified soft wall model, Chin. J. Phys. 66 (2020) 715-723, https://doi.org/10.1016/j.cjph.2020.06.018.

P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev. D 78 (2008) 055009, https://doi.org/10.1103/PhysRevD.78.055009.

H. J. Kwee and R. F. Lebed, Pion form-factors in holographic QCD, JHEP 01 (2008) 027, https://doi.org/10.1088/1126-6708/2008/01/027.

S. J. Brodsky and G. F. de Teramond, Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions, Phys. Rev. D 77 (2008) 056007, https://doi.org/10.1103/PhysRevD.77.056007.

M. A. Martin Contreras, E. Folco Capossoli, D. Li, A. Vega and H. Boschi-Filho, Pion form factor from an AdS deformed background.

H. Ackermann, et al., Determination of the Longitudinal and the Transverse Part in pi+ Electroproduction, Nucl. Phys. B 137 (1978) 294-300, https://doi.org/10.1016/0550-3213(78)90523-0.

C. J. Bebek, et al. Electroproduction of single pions at low epsilon and a measurement of the pion form-factor up to q 2 = 10- GeV2 , Phys. Rev. D 17 (1978) 1693, https://doi.org/10.1103/PhysRevD.17.1693.

P. Brauel,et al., Electroproduction of π +n, π −p and K+Λ, K+Σ 0 Final States Above the Resonance Region, Z. Phys. C 3 (1979) 101, https://doi.org/10.1007/BF01443698.

S. R. Amendolia et al. [NA7], A Measurement of the Space - Like Pion Electromagnetic Form-Factor, Nucl. Phys. B 277 (1986) 168, https://doi.org/10.1016/0550-3213(86)90437-2.

T. Horn et al. [Jefferson Lab F(pi)-2], Determination of the Charged Pion Form Factor at Q**2 = 1.60 and 2.45- (GeV/c)**2, Phys. Rev. Lett. 97 (2006) 192001, https://doi.org/10.1103/PhysRevLett.97.192001.

V. Tadevosyan et al. [Jefferson Lab F(pi)], Determination of the pion charge form-factor for Q**2 = 0.60-GeV**2 - 1.60- GeV**2, Phys. Rev. C 75 (2007) 055205, https://doi.org/10.1103/PhysRevC.75.055205.

P. Maris and P. C. Tandy, The pi, K+, and K0 electromagnetic form-factors, Phys. Rev. C 62 (2000) 055204, https://doi.org/10.1103/PhysRevC.62.055204.

C. Shi, K. Bednar, I. C. Cloët and A. Freese, Spatial and Momentum Imaging of the Pion and Kaon, Phys. Rev. D 101 (2020) 074014, https://doi.org/10.1103/PhysRevD.101.074014.

A. P. Bakulev, et al., Pion form-factor in QCD: From nonlocal condensates to NLO analytic perturbation theory, Phys. Rev. D 70 (2004) 033014, [erratum: Phys. Rev. D 70 (2004) 079906], https://doi.org/10.1103/PhysRevD.70.033014.

B. V. Geshkenbein, Pion electromagnetic form-factor in the space - like region and P phase delta(1) in one-dimension (s) of pi pi scattering from the value of the modulus of form-factor in the time - like region., Phys. Rev. D 61 (2000) 033009, https://doi.org/10.1103/PhysRevD.61.033009.

V. A. Nesterenko and A. V. Radyushkin, Sum Rules and Pion Form-Factor in QCD, Phys. Lett. B 115 (1982) 410, https://doi.org/10.1016/0370-2693(82)90528-7.

C. A. B. Bayona, H. Boschi-Filho, M. Ihl and M. A. C. Torres, Pion and Vector Meson Form Factors in the KupersteinSonnenschein holographic model, JHEP 08 (2010) 122, https://doi.org/10.1007/JHEP08(2010)122.

S. J. Brodsky and G. R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett. 31 (1973) 1153-1156, https://doi.org/10.1103/PhysRevLett.31.1153.

P.A. Zyla et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.




How to Cite

Martin Contreras MA, Capossoli EF, Li D, Vega A, Boschi-Filho H. Electromagnetic Pion form factor in a deformed background . Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 13 [cited 2022 Dec. 9];3(3):0308079 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6111