High precision Kaonic Deuterium measurement at the DAΦNE collider: the SIDDHARTA-2 experiment and the SIDDHARTINO run
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308081Keywords:
Mesonic, hyperonic and antiprotonic atoms and molecules, X- and Γ-ray spectroscopy, Radiation Detectors, Solid-state Detectors, Kaonic atoms, SIDDHARTA-2Abstract
The kaonic deuterium 2p→1s transition X-ray measurement, a fundamental information needed for a deeper understanding of the Quantum ChromoDynamics (QCD) in the strangeness sector, is still missing. The SIDDHARTA-2 collaboration is now ready to achieve this unprecedented result thanks to the dedicated experimental apparatus that will allow to obtain the values of the kaonic deuterium K-transitions with a precision comparable to the most precise kaonic hydrogen measurement to-date performed by SIDDHARTA in 2009. Both the kaonic hydrogen and kaonic deuterium X-ray spectroscopy measurements of the de-excitation towards the fundamental level are a direct probe on KN interaction at threshold, as opposed to the scattering experiments which need an extrapolation to zero energy. Combining these results through the Deser-Truemann like formula, the isospin-dependent kaon-nucleon scattering lengths can be obtained in a model-independent way. The SIDDHARTA-2 setup is presently installed at the DAΦNE (Double Annular Φ Factory for Nice Experiments) collider of Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati and it is ready to perform the challening kaonic deuterium measurement. This
paper provides an overview on the SIDDHARTA-2 experimental apparatus and a preliminary result of the kaonic helium run, preparatory for the SIDDHARTA-2 data taking campaign, is also presented.
References
Merafina M. et al., Self-gravitating strange dark matter halos around galaxies, Phys. Rev. D 102 (2020) 083015(1-12). https://doi.org/10.1103/PhysRevD.102.083015.
Curceanu C. et al., Kaonic Atoms to Investigate Global Symmetry Breaking, Symmetry 12 (2020) 1-12. https://doi.org/10.3390/sym12040547.
Curceanu C. et al., The modern era of light kaonic atom experiments, Rev. Mod. Phys. 91 (2019) 025006(1-36). https://doi.org/10.1103/RevModPhys.91.025006.
De Pietri R. et al., Merger of Compact Stars in the Two-families Scenario, Astrophys. J. 881(2019) 122(1-21). https://doi.org/10.3847/1538-4357/ab2fd0.
M. Bazzi et al., Kaonic hydrogen X-ray measurement in SIDDHARTA, Nucl. Phys. A 881 (2012) 88. https://doi.org/10.1016/j.nuclphysa.2011.12.008.
U.G. Meißner, U. Raha, A. Rusetsky, Spectrum and decays of kaonic hydrogen, Eur. Phys. J. C 35 (2004) 349. https://doi.org/10.1140/epjc/s2004-01859-4.
U.G. Meißner, U. Raha, A. Rusetsky, Kaon–nucleon scattering lengths from kaonic deuterium experiments, Eur. Phys. J. C 47 (2006) 473. https://doi.org/10.1140/epjc/s2006-02578-6.
Milardi C. et al., Preparation Activity for the Siddharta-2 Run at DAΦNE IPAC-2018 334-7 (2018). https://doi.org/10.18429/JACoW-IPAC2018-MOPMF088.
Zobov M. et al., Test of “Crab-Waist” Collisions at the DAΦNE Φ Factory, Phys. Rev. Lett. 104 (2010) 174801(1-5). https://doi.org/10.1103/PhysRevLett.104.174801.
Bazzi M. et al., A new measurement of kaonic hydrogen X-rays, Phys. Lett. B704 (2011) 113-117. https://doi.org/10.1016/j.physletb.2011.09.011.
Bazzi M. et al., Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at DAΦNE, Nucl Phys. A. 907 (2013) 69-77. https://doi.org/10.1016/j.nuclphysa.2013.03.001.
Skurzok M. et al., Characterization of the SIDDHARTA-2 luminosity monitor, Journal of Instrumentation 15 (2020) P10010(1-13). https://doi.org/10.1088/1748-0221/15/10/p10010.
Bazzi M. et al., Characterization of the SIDDHARTA-2 second level trigger detector prototype based on scintillators coupled to a prism reflector light guide, Journal of Instrumentation 8 (2013) T11003(1-12). https://doi.org/10.1088/1748-0221/8/11/T11003.
Schembari F. et al., SFERA: An Integrated Circuit for the Readout of X and γ-Ray Detectors, IEEE Trans. Nucl. Sci. 63, 1797-1807 (2016). https://doi.org/10.1109/TNS.2016.2565200.
Quaglia R. et al., Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment, Nucl. Instrum. Methods Phys. Res. A 824 (2016) 449-451. https://doi.org/10.1016/j.nima.2015.08.079.
Miliucci M. et al., Energy Response of Silicon Drift Detectors for Kaonic Atom Precision Measurements, Condens. Matter 4 (2019) 31(1-8). https://doi.org/10.3390/condmat4010031.
Iliescu M. et al., Reducing the MIPs Charge Sharing Background in X-Ray Spectroscopic SDD Arrays, IEEE Trans. Instrum. Meas. 70 (2021) 9507807. https://doi.org/10.1109/TIM.2021.3068149.
Miliucci M. et al., Silicon drift detectors system for high precision light kaonic atoms spectroscopy, Meas. Sci. Techn. 32 (2021) 095501(1-7). https://doi.org/10.1088/1361-6501/abeea9.
T¨uchler M. et al., A charged particle veto detector for kaonic deuterium measurements at DAΦNE, J. Phys. Conf. Ser. 1138 (2018) 012012(1-8). https://doi.org/10.1088/1742-6596/1138/1/012012.
Doring M. and U. G. Meißner, Kaon–nucleon scattering lengths from kaonic deuterium experiments revisited, Phys. Lett. B 704
(2011) 663-666. https://doi.org/10.1016/j.physletb.2011.09.099.
Shevchenko N.V., Near-threshold K-d scattering and properties of kaonic deuterium, Nucl. Phys. A 890-891 (2017) 50-62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marco Miliucci, Massimiliano Bazzi, Damir Bosnar, Mario Bragadireanu, Marco Carminati, Michael Cargnelli, Alberto Clozza, Catalina Curceanu, Griseld Deda, Luca De Paolis, Raffaele Del Grande, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Masahiko Iwasaki, Pietro King, Paolo Levi Sandri, Johann Marton, Paweł Moskal, Fabrizio Napolitano, Szymon Nied´zwiecki, Kristian Piscicchia, Alessandro Scordo, Francesco Sgaramella, Hexi Shi, Michał Silarski, Diana Sirghi, Florin Sirghi, Magdalena Skurzok, Antonio Spallone, Marlene T¨uchler, Oton Vazquez Doce, Johann Zmeskal (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.