Good and bad diquark properties and spatial correlations in lattice QCD

Authors

  • Anthony Francis CERN
  • Ph. de Forcrand Universitat Bern
  • R. Lewis National Yang Ming Chiao Tung University
  • K. Maltman York University

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308082

Keywords:

Diquarks, exotic hadrons, lattice QCD CERN-TH-2021-223

Abstract

We study good, bad and not-even-bad diquarks on the lattice in a gauge-invariant formalism in full QCD. We establish their spectral masses with short extrapolations to the physical point, observing agreement with phenomenological expectations. We find that only the good diquark has attractive quark-quark spatial correlations, with spherical shape and size of about 0.6 fm. Our results provide quantitative support for modelling the low-lying baryon spectrum using good light diquark effective degrees of freedom.

References

D.B. Lichtenberg and L.J. Tassie, Baryon Mass Splitting in a Boson-Fermion Model, Phys. Rev. 155 (1967) 1601.

R.Jaffe, Exotica, Phys.Rept.409(2005)1 [hep-ph/0409065].

A.Francis, R.J.Hudspith, R.Lewis and K.Maltman, Lattice Prediction for Deeply Bound Doubly Heavy Tetraquarks, Phys. Rev. Lett. 118 (2017) 142001 [1607.05214].

M.Karliner and J.L.Rosner, Discovery of doubly-charmed Ξcc baryon implies a stable (bbud) tetraquark, Phys. Rev. Lett. 119 (2017) 202001 [1707.07666].

E.J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons QiQjq ̄kq ̄l, Phys. Rev. Lett. 119 (2017) 202002 [1707.09575].

A. Czarnecki, B. Leng and M.B. Voloshin, Stability of tetrons, Phys. Lett. B 778 (2018) 233 [1708.04594].

A. Francis, R.J. Hudspith, R. Lewis and K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD, Phys. Rev. D 99 (2019) 054505 [1810.10550].

R.J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, A lattice investigation of exotic tetraquark channels, Phys. Rev. D 102 (2020) 114506 [2006.14294].

P. Junnarkar, N. Mathur and M. Padmanath, Study of doubly heavy tetraquarks in Lattice QCD, Phys. Rev. D 99 (2019) 034507 [1810.12285].

EUROPEAN TWISTED MASS collaboration, Lattice QCD signal for a bottom-bottom tetraquark, Phys. Rev. D 87 (2013) 114511 [1209.6274].

P.Bicudo, K.Cichy, A.Peters and M.Wagner, BBinteractions with static bottom quarks from Lattice QCD, Phys. Rev. D 93 (2016) 034501 [1510.03441].

P.Bicudo, K.Cichy, A.Peters, B.Wagenbach and M.Wagner, Evidence for the existence of ud ̄b ̄b and the non-existence of ss ̄b ̄b and cc ̄b ̄b tetraquarks from lattice QCD, Phys. Rev. D 92 (2015) 014507 [1505.00613].

P.Bicudo, J.Scheunert and M.Wagner,Includingheavyspin effects in the prediction of a bbud tetraquark with lattice QCD potentials, Phys. Rev. D 95 (2017) 034502 [1612.02758].

P. Bicudo, A. Peters, S. Velten and M. Wagner, Importance of meson-meson and of diquark-antidiquark creation operators for a ̄b ̄bud tetraquark, 2101.00723.

L.Leskovec, S.Meinel, M.Pflaumer and M.Wagner, Lattice QCD investigation of a doubly-bottom bbud tetraquark with quantum numbers I (J P ) = 0(1+ ), Phys. Rev. D 100 (2019) 014503 [1904.04197].

A. Francis, P. de Forcrand, R. Lewis and K. Maltman, Diquark properties from full QCD lattice simulations, 2106.09080.

PACS-CS collaboration, 2+1Flavor Lattice QCD toward the Physical Point, Phys. Rev. D 79 (2009) 034503 [0807.1661].

PACS-CS collaboration, Charmed baryons at the physical point in 2+1 flavor lattice QCD, Phys. Rev. D 87 (2013) 094512 [1301.4743].

JLDG, Ensembles available from https://www.jldg.org, .

C.Alexandrou, P.deForcrand and B.Lucini, Searchingfor diquarks in hadrons, PoS LAT2005 (2006) 053 [hep-lat/0509113].

C.Alexandrou, P.deForcrand and B.Lucini, Evidence for diquarks in lattice QCD, Phys. Rev. Lett. 97 (2006) 222002 [hep-lat/0609004].

M.Hess, F.Karsch, E.Laermann and I.Wetzorke, Diquark masses from lattice QCD, Phys. Rev. D58 (1998) 111502 [hep-lat/9804023].

Y.Bi, H.Cai, Y.Chen, M.Gong, Z.Liu, H.-X.Qiao et al., Diquark mass differences from unquenched lattice QCD, Chin. Phys. C 40 (2016) 073106 [1510.07354].

R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch and C. Rebbi, Diquark correlations in baryons on the lattice with overlap quarks, Phys. Rev. D76 (2007) 074021 [hep-lat/0701023].

K.B.Teo and J.W.Negele,The Definition and lattice measurement of hadron wave functions, Nucl. Phys. Proc. Suppl. 34 (1994) 390.

J.W. Negele, Hadron structure in lattice QCD: Exploring the gluon wave functional, in Excited nucleons and hadronic structure. Proceedings, Conference, NSTAR 2000, Newport News, USA, February 16-19, 2000, pp. 368–377, 2000 [hep-lat/0007026].

C.Alexandrou, P.deForcrand and A.Tsapalis, Probing hadron wave functions in lattice QCD, Phys. Rev. D66 (2002) 094503 [hep-lat/0206026].

PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.

K. Orginos, Diquark properties from lattice QCD, PoS LAT2005 (2006) 054 [hep-lat/0510082].

J.Green, J.Negele, M.Engelhardt and P.Varilly, Spatial diquark correlations in a hadron, PoS LATTICE2010 (2010) 140 [1012.2353].

M.Padmanath, Heavy baryon spectroscopy from lattice QCD, 1905.10168.

C.Alexandrou and C.Kallidonis, Low-lying baryon masses using Nf =2 twisted mass clover-improved fermions directly at the physical pion mass, Phys. Rev. D 96 (2017) 034511 [1704.02647].

R.J.Hudspith, A.Francis, R.Lewis and K.Maltman, Heavy and light spectroscopy near the physical point, Part I: Charm and bottom baryons, PoS LATTICE2016 (2017) 133.

B. Blossier and A. Ge ́rardin, Density distributions in the B meson, Phys. Rev. D 94 (2016) 074504 [1604.02891].

Downloads

Published

2022-05-19

How to Cite

1.
Francis A, de Forcrand P, Lewis R, Maltman K. Good and bad diquark properties and spatial correlations in lattice QCD. Supl. Rev. Mex. Fis. [Internet]. 2022 May 19 [cited 2022 Dec. 9];3(3):0308082 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6117