New insight in the 2-flavor Schwinger model based on lattice simulations


  • Jaime Fabián Nieto Castellanos Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
  • Wolfgang Bietenholz Instituto de Ciencias Nucleares, UNAM
  • Ivan Hip Faculty of Geotechnical Engineering, University of Zagreb, Croatia



Schwinger model, lattice gauge theory, finite temperature, chiral condensate, ±-regime, pion decay constant


We consider the Schwinger model with two degenerate, light fermion flavors by means of lattice simulations. At finite temperature, we probe the viability of a bosonization method by Hosotani {\it et al.} Next we explore an analogue to the pion decay constant, which agrees for independent formulations based on the Gell-Mann--Oakes--Renner relation, the 2-dimensional Witten--Veneziano formula and the $\delta$-regime. Finally we confront several conjectures about the chiral condensate with lattice results.


J. Schwinger, Gauge Invariance and Mass. 2., Phys. Rev. 128 (1962) 2425, 128.2425.

L. V. Belvedere, K. D. Rothe, B. Schroer and J. Swieca, Generalized Two-dimensional Abelian Gauge Theories and Confinement, Nucl. Phys. B 153 (1979) 112,

I. Hip, J. F. Nieto Castellanos and W. Bietenholz, Finite temperature and δ-regime in the 2-flavor Schwinger model,

Y. Hosotani, More about the massive multiflavor Schwinger model, in Nihon University Workshop on Fundamental Problems in Particle Physics (1995) 64,; Y. Hosotani and R. Rodriguez, Bosonized massive N-flavor Schwinger model, J. Phys. A 31 (1998) 9925,

J. F. Nieto Castellanos, The 2-flavor Schwinger model at finite temperature and in the delta-regime, B.Sc. thesis, Universidad Nacional Autonoma de Mexico, 2021.

A. V. Smilga, Critical amplitudes in two-dimensional theories, Phys. Rev. D 55 (1997) R443,

K. Harada, T. Sugihara, M. Taniguchi and M. Yahiro, The massive Schwinger model with SU(2)f on the light cone, Phys. Rev. D 49 (1994) 4226,

A. Smilga and J. J. M. Verbaarschot, Scalar susceptibility in QCD and the multiflavor Schwinger model, Phys. Rev. D 54 (1996) 1087,

A. Smilga, On the fermion condensate in the Schwinger model, Phys. Lett. B 278 (1992) 371,

J. E. Hetrick, Y. Hosotani and S. Iso, The massive multiflavor Schwinger model, Phys. Lett. B 350 (1995) 92,

E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269, G. Veneziano, U(1) Without Instatons, Nucl. Phys. B 159 (1979) 213,

C. Gattringer and E. Seiler, Functional integral approach to the N flavor Schwinger model, Annals Phys. 233 (1994) 97,

E. Seiler and I. O. Stamatescu, Some remarks on the Witten-Veneziano formula for the η 0 mass, Preprint (1987)

W. A. Bardeen, A. Duncan, E. Eichten and H. Thacker, Quenched approximation artifacts: A study in two-dimensional QED, Phys. Rev. D 57 (1998) 3890, S. Durr and C. Hoel-bling, Staggered versus overlap fermions: A Study in the Schwinger model with Nf = 0, 1, 2, Phys. Rev. D 69 (2004) 034503, C. Bonati and P. Rossi, Topological susceptibility of two-dimensional U(N) gauge theories, Phys. Rev. D 99 (2019) 054503,

H. Leutwyler, Energy Levels of Light Quarks Confined to a Box, Phys. Lett. B 189 (1987) 197,

P. Hasenfratz and F. Niedermayer, Finite size and temperature effects in the AF Heisenberg model, Z. Phys. B 92 (1993) 91,




How to Cite

Nieto Castellanos JF, Bietenholz W, Hip I. New insight in the 2-flavor Schwinger model based on lattice simulations. Supl. Rev. Mex. Fis. [Internet]. 2022 Mar. 31 [cited 2023 Nov. 30];3(2):020707 1-5. Available from: