Application of the weak-binding relation with range correction

Authors

  • Tomona Kinugawa Tokyo Metropolitan University
  • Tetsuo Hyodo

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308066

Keywords:

Weak-binding relation, range correction, structure of hadrons

Abstract

The weak-binding relation is a useful tool to study the internal structure of hadrons from the observable quantities. We introduce the range correction in the weak-binding relation for the system having a sizable magnitude of the effective range, and show that the applicability of the weak-binding relation can be enlarged by the range correction. Thanks to the low-energy universality, the weak-binding relation can be used to study the structure of shallow bound states in any systems with different length scales. We apply the weak-binding relation to actual systems, including hadrons, hypernuclei, and atoms and show the importance of the range correction.

References

P. A. Zyla et al. (Particle Data Group), Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.

T. Hyodo and M. Niiyama, QCD and the strange baryon spectrum, Prog. Part. Nucl. Phys. 120 (2021) 103868, https://doi.org/10.1016/j.ppnp.2021.103868.

S. K. Choi et al. [Belle], Observation of a narrow charmoniumlike state in exclusive B± → K±π+π−J/ψ decays, Phys. Rev. Lett. 91 (2003) 262001, https://doi.org/10.1103/PhysRevLett.91.262001.

A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, Prog. Theor. Exp. Phys. 2016 (2016) 062C01, https://doi.org/10.1093/ptep/ptw045.

F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 (2018) 015004, https://doi.org/10.1103/RevModPhys.90.015004.

N. Brambilla et al., The XY Z states: experimental and theoretical status and perspectives, Phys. Rept. 873 (2020) 1, https://doi.org/10.1016/j.physrep.2020.05.001.

S. Weinberg, Evidence That the Deuteron Is Not an Elementary Particle, Phys. Rev. 137 (1965) B672, https://doi.org/10.1103/PhysRev.137.B672.

Y. Kamiya and T. Hyodo, Structure of near-threshold quasibound states, Phys. Rev. C 93 (2016) 035203, https://doi.org/10.1103/PhysRevC.93.035203.

Y. Kamiya and T. Hyodo, Generalized weak-binding relations of compositeness in effective field theory, PTEP 2017 (2017) 023D02, https://doi.org/10.1093/ptep/ptw188.

T. Kinugawa and T. Hyodo, Range correction in the weakbinding relation for unstable states, [arXiv:2111.06619 [hep-ph]], https://doi.org/10.48550/arXiv.2111.06619.

T. Kinugawa and T. Hyodo, Role of the effective range in the weak-binding relation, [arXiv:2112.00249 [hep-ph]], https://doi.org/10.48550/arXiv.2112.00249.

E. Braaten and H. W. Hammer, Universality in few-body systems with large scattering length, Phys. Rept. 428 (2006) 259, https://doi.org/10.1016/j.physrep.2006.03.001.

P. Naidon and S. Endo, Efimov Physics: a review, Rept. Prog. Phys. 80 (2017) 056001, https://doi.org/10.1088/1361-6633/aa50e8.

E. Braaten, M. Kusunoki and D. Zhang, Scattering Models for Ultracold Atoms, Annals Phys. 323 (2008) 1770, https://doi.org/10.1016/j.aop.2007.12.004.

T. Iritani et al. (HAL QCD Collaboration), NΩ dibaryon from lattice QCD near the physical point, Phys. Lett. B 792 (2019) 284, https://doi.org/10.1016/j.physletb.2019.03.050.

S. Gongyo et al., Most Strange Dibaryon from Lattice QCD, Phys. Rev. Lett. 120 (2018) 212001, https://doi.org/10.1103/PhysRevLett.120.212001.

M. Wang, W. J. Huang, F. G. Kondev, G. Audi and S. Naimi, The AME 2020 atomic mass evaluation (II). Tables, graphs and references, Chin. Phys. C 45 (2021) 030003, https://doi.org/10.1088/1674-1137/abddaf.

T. Sekihara, Y. Kamiya and T. Hyodo, NΩ interaction: meson exchanges, inelastic channels, and quasibound state, Phys. Rev. C 98 (2018) 015205, https://doi.org/10.1103/PhysRevC.98.015205.

R. Machleidt, The High precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn), Phys. Rev. C 63 (2001) 024001, https://doi.org/10.1103/PhysRevC.63.024001.

A. Esposito, L. Maiani, A. Pilloni, A. D. Polosa and V. Riquer, From the lineshape of the X(3872) to its structure, Phys. Rev. D 105 (2022) L031503, https://doi.org/10.1103/PhysRevD.105.L031503.

R. Aaij et al. [LHCb], Study of the lineshape of the χc1(3872) state, Phys. Rev. D 102 (2020) 092005, https://doi.org/10.1103/PhysRevD.102.092005.

V. Baru et al., Effective range expansion for narrow nearthreshold resonances, [arXiv:2110.07484 [hep-ph]], https://doi.org/10.48550/arXiv.2110.07484.

M. Juriˇc et al., A new determination of the bindingenergy values of the light hypernuclei (A ≤ 15), Nucl. Phys. B 52 (1973) 1, https://doi.org/10.1016/0550-3213(73)90084-9.

H.-W. Hammer, The Hypertriton in effective field theory, Nucl. Phys. A 705 (2002) 173, https://doi.org/10.1016/S0375-9474(02)00621-8.

A. Kievsky and M. Gattobigio, Universal nature and finiterange corrections in elastic atom-dimer scattering below the dimer breakup threshold, Phys. Rev. A 87 (2013) 052719, https://doi.org/10.1103/PhysRevA.87.052719.

Z.-C. Yan, J.F. Babb, A. Dalgarno, and G.W.F. Drake, Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms, Phys. Rev. A 54 (1996) 2824, https://doi.org/10.1103/PhysRevA.54.2824.

Downloads

Published

2022-04-30

How to Cite

1.
Kinugawa T, Hyodo T. Application of the weak-binding relation with range correction. Supl. Rev. Mex. Fis. [Internet]. 2022 Apr. 30 [cited 2025 Jan. 22];3(3):0308066 1-4. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6132