Quantum computation of heavy quarkonium masses

Authors

  • Daniel Gallimore Indiana University Bloomington
  • Jinfeng Liao Indiana University Bloomington

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308068

Keywords:

Quantum Computing, Variational Quantum Eigensolver, Cornell Potential, Quark Bound State, Error Mitigation

Abstract

We perform a quantum calculation of the 1S charmonium mass by simulating the spinless Cornell Hamiltonian on a quantum processor using a variational method. Errors due to a global depolarizing noise channel are corrected with a zero-noise extrapolation method, resulting in good agreement with the known value. We also calculate the 2S mass of charmonium on a noiseless quantum simulator by orthogonalizing with respect to the ground state. This research demonstrates that near-term quantum devices are capable of simulating heavy quark bound states, which are currently under-represented in the literature.

References

I. C. Clöet et al., Opportunities for Nuclear Physics & Quantum Information Science, arXiv preprint (2019). https://arxiv.org/abs/1903.05453.

D. B. Zhang, H. Xing, H. Yan, E. Wang and S. L. Zhu, Selected topics of quantum computing for nuclear physics, Chinese Phys. B 30 (2021) 020306. https://doi.org/10.1088/1674-1056/abd761.

D. E. Kharzeev, Quantum information approach to high energy interactions, Phil. Trans. A. Math. Phys. Eng. Sci. 380 (2021) 20210063. https://royalsocietypublishing.org/doi/10.1098/rsta.2021.0063.

E. F. Dumitrescu et al., Cloud quantum computing of an atomic nucleus, Phys. Rev. Lett. 120 (2018) 210501. https://doi.org/10.1103/PhysRevLett.120.210501.

H. H. Lu et al., Simulations of subatomic many-body physics on a quantum frequency processor, Phys. Rev. A 100 (2019) 012320. https://link.aps.org/doi/10.1103/PhysRevA.100.012320.

N. Klco et al., Quantum-classical computation of Schwinger model dynamics using quantum computers, Phys. Rev. A 98 (2018) 032331. https://link.aps.org/doi/10.1103/PhysRevA.98.032331.

N. Klco and M. J. Savage, Digitization of scalar fields for quantum computing, Phys. Rev. A 99 (2019) 052335. https://link.aps.org/doi/10.1103/PhysRevA.99.052335.

A. Roggero and J. Carlson, Dynamic linear response quantum algorithm, Phys. Rev. C 100 (2019) 034610. https://link.aps.org/doi/10.1103/PhysRevC.100.034610.

D. Lee et al., Projected Cooling Algorithm for Quantum Computation, Phys. Lett. B 807 (2020) 135536. https://link.aps.org/doi/10.1016/j.physletb.2020.135536.

H. Lamm, S. Lawrence and Y. Yamauchi, General methods for digital quantum simulation of gauge theories, Phys. Rev. D 100 (2019) 034518. https://link.aps.org/doi/10.1103/PhysRevD.100.034518.

A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm, S. Lawrence and N. C. Warrington, Gluon field digitization for quantum computers, Phys. Rev. D 100 (2019) 114501. https://link.aps.org/doi/10.1103/PhysRevD.100.114501.

A. Ciavarella, N. Klco and M. J. Savage, Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103 (2021) 094501. https://link.aps.org/doi/10.1103/PhysRevD.103.094501.

Y. Y. Atas, J. Zhang, R. Lewis, A. Jahanpour, J. F. Haase and C. A. Muschik, SU(2) hadrons on a quantum computer via a variational approach, Nat. Commun. 12 (2021) 6499. https://doi.org/10.1038/s41467-021-26825-4.

T. D. Cohen, H. Lamm, S. Lawrence and Y. Yamauchi, Quantum algorithms for transport coefficients in gauge theories, Phys. Rev. D 104 (2021) 094514. https://doi.org/10.1103/PhysRevD.104.094514.

T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D. B. Zhang and S. L. Zhu, Partonic Structure by Quantum Computing, arXiv preprint (2021). https://arxiv.org/abs/2106.03865.

D. E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics from a digital quantum simulation, Phys. Rev. Res. 2 (2020) 023342. https://doi.org/10.1103/PhysRevResearch.2.023342.

Z. Tu, D. E. Kharzeev and T. Ullrich, Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales, Phys. Rev. Lett. 124 (2020) 062001. https://doi.org/10.1103/PhysRevLett.124.062001.

J. R. McClean, J. Romero, R. Babbush and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18 (2016) 023023. https://doi.org/10.1088/1367-2630/18/2/023023.

Y. Shen, X. Zhang, S. Zhang, J. Zhang, M. Yung and K. Kim, Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure, Phys. Rev. A 95 (2017) 020501. https://doi.org/10.1103/PhysRevA.95.020501.

D. Gallimore and J. Liao, Quantum Computing for Heavy Quarkonium Spectroscopy, arXiv preprint (2022). https://arxiv.org/abs/2202.03333.

H. S. Chung, J. Lee and D. Kang, Cornell Potential Parameters for S-Wave Heavy Quarkonia, J. Korean Phys. Soc. 52 (2008) 1151. https://doi.org/10.3938/jkps.52.1151.

E. A. Hylleraas and B. Undheim, Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium, Zeitschrift für Physik 65 (1930) 759. https://doi.org/10.1007/BF01397263.

J. K. L. MacDonald, Successive Approximations by the Rayleigh-Ritz Variation Method, Phys. Rev. 43 (1933) 830. https://link.aps.org/doi/10.1103/PhysRev.43.830.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary ed. (Cambridge University Press, Cambridge, UK, 2011), pp. 373–385.

T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari and W. J. Zeng, Digital zero noise extrapolation for quantum error mitigation, 2020 IEEE International Conference on Quantum Computing and Engineering (2020) 306–316. https://doi.org/10.1109/QCE49297.2020.00045.

Downloads

Published

2022-06-29

How to Cite

1.
Gallimore D, Liao J. Quantum computation of heavy quarkonium masses. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 29 [cited 2022 Dec. 9];3(3):0308068 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6137