Axial-vector contributions to the HFS of muonic hydrogen

Authors

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.020719

Keywords:

Hyperfine splitting, form factor, axial-vector meson, muonic hydrogen

Abstract

We review the axial-vector meson contributions to the HFS of muonic hydrogen. We evaluate the impact of the singly- and doubly-virtual asymptotic behavior of the transition form factors of the axial-vector mesons. As our main result, we find an opposite sign (and a factor of 2 difference) concerning previous analyses and a novel discussion of the hadronic modeling.

References

G. W. Bennett et al. [Muon g-2], “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, https://doi.org/10.1103/PhysRevD.73.072003.

B. Abi et al. [Muon g-2], “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 (2021) 141801, https://doi.org/10.1103/PhysRevLett.126.141801.

R. Aaij et al. [LHCb], “Test of lepton universality in beautyquark decays,” Nature Phys. 18 (2022) 277, https://doi.org/10.1038/s41567-021-01478-8.

B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, “Patterns of New Physics in b → s`+` − transitions in the light of recent data,” JHEP 01 (2018) 093, https://doi.org/10.1007/JHEP01(2018)093.

J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D. M. Straub, “B-decay discrepancies after Moriond 2019,” Eur. Phys. J. C 80 (2020) 252, https://doi.org/10.1140/epjc/s10052-020-7817-x.

A. Antognini et al., “Proton Structure from the Measurement of 2S − 2P Transition Frequencies of Muonic Hydrogen,” Science 339 (2013) 417, https://doi.org/10.1126/science.1230016.

Y. Ma et al., “New Precision Measurement for Proton Zemach Radius with Laser Spectroscopy,” Int. J. Mod. Phys. Conf. Ser. 40 (2016) 1660046, https://doi.org/10.1142/S2010194516600466.

R. Pohl [CREMA], “Laser Spectroscopy of Muonic Hydrogen and the Puzzling Proton,” J. Phys. Soc. Jap. 85 (2016) 091003, https://doi.org/10.7566/JPSJ.85.091003.

A. Adamczak et al. [FAMU], “Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization,” JINST 11 (2016) P05007, https://doi.org/10.1088/1748-0221/11/05/P05007.

V. Pauk and M. Vanderhaeghen, “Single meson contributions to the muon’s anomalous magnetic moment,” Eur. Phys. J. C 74 (2014) 3008, https://doi.org/10.1140/epjc/s10052-014-3008-y.

F. Jegerlehner, “The Anomalous Magnetic Moment of the Muon,” Springer Tracts Mod. Phys. 274 (2017) 1, https://doi.org/10.1007/978-3-319-63577-4.

P. Roig and P. Sanchez-Puertas, “Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment,” Phys. Rev. D 101 (2020) 074019, https://doi.org/10.1103/PhysRevD.101.074019.

J. Leutgeb and A. Rebhan, “Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon,” Phys. Rev. D 101 (2020) 114015, https://doi.org/10.1103/PhysRevD.101.114015.

L. Cappiello, O. Cata, G. D’Ambrosio, D. Greynat and A. Iyer, “Axial-vector and pseudoscalar mesons in the hadronic light-by-light contribution to the muon (g − 2),” Phys. Rev. D 102 (2020) 016009, https://doi.org/10.1103/PhysRevD.102.016009.

P. Masjuan, P. Roig and P. Sanchez-Puertas, “The interplay of transverse degrees of freedom and axial-vector mesons with short-distance constraints in g − 2,” J. Phys. G 49 (2022) 015002, https://doi.org/10.1088/1361-6471/ac3892.

T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Ce and ` G. Colangelo, et al. “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1, https://doi.org/10.1016/j.physrep.2020.07.006.

A. Szczurek, “Production of axial-vector mesons at e +e − collisions with double-tagging as a way to constrain the axial meson light-by-light contribution to the muon g-2 and the hyperfine splitting of muonic hydrogen,” Phys. Rev. D 102 (2020) 113015, https://doi.org/10.1103/PhysRevD.102.113015.

M. Zanke, M. Hoferichter and B. Kubis, “On the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e −,” JHEP 07 (2021) 106, https://doi.org/10.1007/JHEP07(2021)106.

G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, “Short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an update,” Eur. Phys. J. C 81 (2021) 702, https://doi.org/10.1140/epjc/s10052-021-09513-x.

J. Leutgeb and A. Rebhan, “Hadronic light-by-light contribution to the muon g-2 from holographic QCD with massive pions,” Phys. Rev. D 104 (2021) 094017, https://doi.org/10.1103/PhysRevD.104.094017.

A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A. Martynenko and A. E. Radzhabov, “The contribution of axial-vector mesons to hyperfine structure of muonic hydrogen,” Phys. Lett. B 776 (2018) 105, https://doi.org/10.1016/j.physletb.2017.11.027.

P. Masjuan, E. Ruiz Arriola and W. Broniowski, “Meson dominance of hadron form factors and large-Nc phenomenology,” Phys. Rev. D 87 (2013) 014005, https://doi.org/10.1103/PhysRevD.87.014005.

A. E. Dorokhov, A. P. Martynenko, F. A. Martynenko and A. E. Radzhabov, “Effects of light-by-light scattering in the Lamb shift and hyperfine structure of muonic hydrogen,” EPJ Web Conf. 222 (2019) 03010, https://doi.org/10.1051/epjconf/201922203010.

A. S. Rudenko, “f1(1285) → e +e − decay and direct f1 production in e +e − collisions,” Phys. Rev. D 96 (2017) 076004, https://doi.org/10.1103/PhysRevD.96.076004.

A. Miranda, P. Roig and P. Sanchez-Puertas, “Axial-vector exchange contribution to the hyperfine splitting,” Phys. Rev. D 105 (2022) 016017, https://doi.org/10.1103/PhysRevD.105.016017.

M. N. Achasov et al. [SND], “Search for direct production of the f1(1285) resonance in e +e − collisions,” Phys. Lett. B 800 (2020) 135074, https://doi.org/10.1016/j.physletb.2019.135074.

L. D. Landau, “On the angular momentum of a system of two photons,” Dokl. Akad. Nauk SSSR 60 (1948) 207, https: //doi.org/10.1016/B978-0-08-010586-4.50070-5.

C. N. Yang, “Selection Rules for the Dematerialization of a Particle Into Two Photons,” Phys. Rev. 77 (1950) 242, https://doi.org/10.1103/PhysRev.77.242.

C. Frugiuele and C. Peset, “Muonic vs electronic dark forces: a complete EFT treatment for atomic spectroscopy,” [arXiv:2107.13512 [hep-ph]].

L. Hayen, “Radiative corrections to nucleon weak charges and Beyond Standard Model impact,” [arXiv:2102.03458 [hepph]].

C. Alexandrou et al., “Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD,” Phys. Rev. D 102 (2020) 054517, https://doi.org/10.1103/PhysRevD.102.054517.

D. G. Dumm, P. Roig, A. Pich and J. Portoles, “tau —> pi pi pi nu(tau) decays and the a(1) (1260) off-shell width revisited,” Phys. Lett. B 685 (2010) 158, https://doi.org/10.1016/j.physletb.2010.01.059.

I. M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova and Z. Was, “Resonance chiral Lagrangian currents and experimental data for τ − → π −π −π +ντ ,” Phys. Rev. D 88 (2013) 093012, https://doi.org/10.1103/PhysRevD.88.093012.

P. Achard et al. [L3], “f(1) (1285) formation in two photon collisions at LEP,” Phys. Lett. B 526 (2002) 269, https://doi.org/10.1016/S0370-2693(01)01477-0.

P. Achard et al. [L3], “Study of resonance formation in the mass region 1400-MeV to 1500-MeV through the reaction gamma gamma —> K0(S) K+- pi-+,” JHEP 03 (2007) 018, https://doi.org/10.1088/1126-6708/2007/03/018.

P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.

P. Masjuan, E. Ruiz Arriola and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light non-strange q-barq-states,” Phys. Rev. D 85 (2012) 094006, https://doi.org/10.1103/PhysRevD.85.094006.

N. T. Huong, E. Kou and B. Moussallam, “Single pion contribution to the hyperfine splitting in muonic hydrogen,” Phys. Rev. D 93 (2016) 114005, https://doi.org/10.1103/PhysRevD.93.114005. 39. J. L. Friar and I. Sick, “Zemach moments for hydrogen and deuterium,” Phys. Lett. B 579 (2004) 285, https://doi.org/10.1016/j.physletb.2003.11.018.

M. O. Distler, J. C. Bernauer and T. Walcher, “The RMS Charge Radius of the Proton and Zemach Moments,” Phys. Lett. B 696 (2011) 343-347. https://doi.org/10.1016/j.physletb.2010.12.067.

A. V. Volotka, V. M. Shabaev, G. Plunien and G. Soff, “Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen,” Eur. Phys. J. D 33 (2005) 23-27. https://doi.org/10.1140/epjd/e2005-00025-9.

A. Dupays, A. Beswick, B. Lepetit, C. Rizzo and D. Bakalov, “Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen,” Phys. Rev. A 68 (2003) 052503. https://doi.org/10.1103/PhysRevA.68.052503.

Y. H. Lin, H. W. Hammer and U. G. Meißner, “New Insights into the Nucleon’s Electromagnetic Structure,” Phys. Rev. Lett. 128 (2022) 052002, https://doi.org/10.1103/PhysRevLett.128.052002. [arXiv:2109.12961 [hep-ph]].

M. Hoferichter and P. Stoffer, “Asymptotic behavior of meson transition form factors,” JHEP 05 (2020) 159, https://doi.org/10.1007/JHEP05(2020)159. [arXiv:2004.06127 [hep-ph]].

Downloads

Published

2022-06-22

How to Cite

1.
Miranda Hernández JA, Roig Garcés P, Sánchez Puertas P. Axial-vector contributions to the HFS of muonic hydrogen. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 22 [cited 2025 Jan. 15];3(2):020719 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6158