Quenched glueballs in the DSE/BSE framework

Authors

  • Markus Q. Huber Giessen University
  • Christian S. Fischer Giessen University
  • Hèlios Sanchis-Alelpuz Silicon Austria Labs GmbH

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308086

Keywords:

glueballs, quantum chromodynamics

Abstract

The spectrum of glueballs with quantum numbers JPC = 0±+, 2±+, 3±+, 4±+ is calculated in quenched quantum chromodynamics (QCD) from bound state equations. The input is taken from a parameter-free calculation of two- and three-point functions. Our results agree well with lattice results where available and contain also some additional states. For the scalar glueball, we present first results for the effects of additional diagrams which turn out to be strongly suppressed.

References

E. Klempt and A. Zaitsev, “Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts”, Phys.

Rept. 454 (2007) 1–202, arXiv:0708.4016 [hep-ph].

V. Crede and C. A. Meyer, “The Experimental Status of Glueballs”, Prog. Part. Nucl. Phys. 63 (2009) 74–116,

arXiv:0812.0600 [hep-ex].

V. Mathieu, N. Kochelev, and V. Vento, “The Physics of Glueballs”, Int. J. Mod. Phys. E 18 (2009) 1–49,

arXiv:0810.4453 [hep-ph].

W. Ochs, “The Status of Glueballs”, J. Phys. G40 (2013) 043001, arXiv:1301.5183 [hep-ph].

F. J. Llanes-Estrada, “Glueballs as the Ithaca of meson spectroscopy”, arXiv:2101.05366 [hep-ph].

A. V. Sarantsev, I. Denisenko, U. Thoma, and E. Klempt, “Scalar isoscalar mesons and the scalar glueball from radiative

J/ψ decays”, Phys. Lett. B 816 (2021) 136227, arXiv:2103.09680 [hep-ph].

JPAC Collaboration, A. Rodas, A. Pilloni, M. Albaladejo, C. Fernandez-Ramirez, V. Mathieu, and A. P. Szczepaniak,

“Scalar and tensor resonances in J/ψ radiative decays”, arXiv:2110.00027 [hep-ph].

E. Klempt and A. V. Sarantsev, “Singlet-octet-glueball mixing of scalar mesons”, arXiv:2112.04348 [hep-ph].

UKQCD Collaboration, G. S. Bali, K. Schilling, A. Hulsebos, A. C. Irving, C. Michael, and P. W. Stephenson, “A

Comprehensive lattice study of SU(3) glueballs”, Phys. Lett. B309 (1993) 378–384, arXiv:hep-lat/9304012 [hep-lat].

C. J. Morningstar and M. J. Peardon, “The Glueball spectrum from an anisotropic lattice study”, Phys. Rev. D60

(1999) 034509, arXiv:hep-lat/9901004 [hep-lat].

Y. Chen et al., “Glueball spectrum and matrix elements on anisotropic lattices”, Phys. Rev. D73 (2006) 014516,

arXiv:hep-lat/0510074 [hep-lat].

A. Athenodorou and M. Teper, “The glueball spectrum of SU(3) gauge theory in 3+1 dimension”, arXiv:2007.06422

[hep-lat].

E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, and E. Rinaldi, “Towards the glueball spectrum from

unquenched lattice QCD”, JHEP 10 (2012) 170, arXiv:1208.1858 [hep-lat].

R. Brett, J. Bulava, D. Darvish, J. Fallica, A. Hanlon, B. Hörz, and C. Morningstar, “Spectroscopy From The Lattice:

The Scalar Glueball”, AIP Conf. Proc. 2249 no. 1, (2020) 030032, arXiv:1909.07306 [hep-lat].

F. Chen, X. Jiang, Y. Chen, K.-F. Liu, W. Sun, and Y.-B. Yang, “Glueballs at Physical Pion Mass”, arXiv:2111.11929

[hep-lat].

I. C. Cloet and C. D. Roberts, “Explanation and Prediction of Observables using Continuum Strong QCD”, Prog. Part.

Nucl. Phys. 77 (2014) 1–69, arXiv:1310.2651 [nucl-th].

G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, “Baryons as relativistic three-quark bound

states”, Prog. Part. Nucl. Phys. 91 (2016) 1–100, arXiv:1606.09602 [hep-ph].

J. Meyers and E. S. Swanson, “Spin Zero Glueballs in the Bethe-Salpeter Formalism”, Phys. Rev. D87 no. 3, (2013)

, arXiv:1211.4648 [hep-ph].

H. Sanchis-Alepuz, C. S. Fischer, C. Kellermann, and L. von Smekal, “Glueballs from the Bethe-Salpeter equation”,

Phys. Rev. D92 (2015) 034001, arXiv:1503.06051 [hep-ph].

E. V. Souza, M. N. Ferreira, A. C. Aguilar, J. Papavassiliou, C. D. Roberts, and S.-S. Xu, “Pseudoscalar glueball mass: a

window on three-gluon interactions”, Eur. Phys. J. A56 no. 1, (2020) 25, arXiv:1909.05875 [nucl-th].

L. Kaptari and B. Kämpfer, “Mass spectrum of pseudo-scalar glueballs from a Bethe-Salpeter approach with the

rainbow-ladder truncation”, Few Body Syst. 61 no. 3, (2020) 28, arXiv:2004.06523 [hep-ph].

M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, “Spectrum of scalar and pseudoscalar glueballs from functional

methods”, Eur. Phys. J. C 80 no. 11, (2020) 1077, arXiv:2004.00415 [hep-ph].

M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, “Higher spin glueballs from functional methods”, arXiv:2110.09180

[hep-ph].

M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, “Quenched glueball spectrum from functional equations” in A virtual

tribute to Quark Confinement and the Hadron Spectrum. 11, 2021. arXiv:2111.10197 [hep-ph].

D. Dudal, M. S. Guimaraes, and S. P. Sorella, “Glueball masses from an infrared moment problem and nonperturbative

Landau gauge”, Phys. Rev. Lett. 106 (2011) 062003, arXiv:1010.3638 [hep-th].

D. Dudal, M. S. Guimaraes, and S. P. Sorella, “Pade approximation and glueball mass estimates in 3d and 4d with

N c = 2, 3 colors”, Phys. Lett. B732 (2014) 247–254, arXiv:1310.2016 [hep-ph].

A. Windisch, M. Q. Huber, and R. Alkofer, “On the analytic structure of scalar glueball operators at the Born level”,

Phys. Rev. D87 no. 6, (2013) 065005, arXiv:1212.2175 [hep-ph].

A. Szczepaniak, E. S. Swanson, C.-R. Ji, and S. R. Cotanch, “Glueball spectroscopy in a relativistic many body approach

to hadron structure”, Phys. Rev. Lett. 76 (1996) 2011–2014, arXiv:hep-ph/9511422 [hep-ph].

A. P. Szczepaniak and E. S. Swanson, “The Low lying glueball spectrum”, Phys. Lett. B577 (2003) 61–66,

arXiv:hep-ph/0308268 [hep-ph].

S. Janowski, D. Parganlija, F. Giacosa, and D. H. Rischke, “The Glueball in a Chiral Linear Sigma Model with Vector

Mesons”, Phys. Rev. D84 (2011) 054007, arXiv:1103.3238 [hep-ph].

W. I. Eshraim, S. Janowski, F. Giacosa, and D. H. Rischke, “Decay of the pseudoscalar glueball into scalar and

pseudoscalar mesons”, Phys. Rev. D87 no. 5, (2013) 054036, arXiv:1208.6474 [hep-ph].

J. Berges, “n-PI effective action techniques for gauge theories”, Phys. Rev. D70 (2004) 105010, arXiv:hep-ph/0401172.

M. Carrington and Y. Guo, “Techniques for n-Particle Irreducible Effective Theories”, Phys.Rev. D83 (2011) 016006,

arXiv:1010.2978 [hep-ph].

R. Fukuda, “Stability Conditions in Quantum System. A General Formalism”, Prog. Theor. Phys. 78 (1987) 1487–1507.

D. W. McKay and H. J. Munczek, “Composite Operator Effective Action Considerations on Bound States and

Corresponding S Matrix Elements”, Phys. Rev. D40 (1989) 4151.

H. Sanchis-Alepuz and R. Williams, “Hadronic Observables from Dyson-Schwinger and Bethe-Salpeter equations”, J.

Phys. Conf. Ser. 631 no. 1, (2015) 012064, arXiv:1503.05896 [hep-ph].

M. Q. Huber, “Correlation functions of Landau gauge Yang-Mills theory”, Phys. Rev. D 101 no. 11, (2020) 11,

arXiv:2003.13703 [hep-ph].

M. Q. Huber, “Correlation functions of three-dimensional Yang-Mills theory from Dyson-Schwinger equations”, Phys.

Rev. D93 no. 8, (2016) 085033, arXiv:1602.02038 [hep-th].

M. Q. Huber, “On non-primitively divergent vertices of Yang–Mills theory”, Eur. Phys. J. C77 no. 11, (2017) 733,

arXiv:1709.05848 [hep-ph].

G. Eichmann, R. Williams, R. Alkofer, and M. Vujinovic, “The three-gluon vertex in Landau gauge”, Phys.Rev. D89

(2014) 105014, arXiv:1402.1365 [hep-ph].

M. Q. Huber, “Nonperturbative properties of Yang–Mills theories”, Phys. Rept. 879 (2020) 1–92, arXiv:1808.05227

[hep-ph].

A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N. Strodthoff, “Landau gauge Yang-Mills correlation functions”,

Phys. Rev. D94 no. 5, (2016) 054005, arXiv:1605.01856 [hep-ph].

P. Boucaud et al., “IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation”,

JHEP 06 (2008) 012, arXiv:0801.2721 [hep-ph].

C. S. Fischer, A. Maas, and J. M. Pawlowski, “On the infrared behavior of Landau gauge Yang-Mills theory”, Annals

Phys. 324 (2009) 2408–2437, arXiv:0810.1987 [hep-ph].

R. Alkofer, M. Q. Huber, and K. Schwenzer, “Infrared singularities in landau gauge yang-mills theory”, Phys. Rev. D81

(2010) 105010, arXiv:0801.2762 [hep-th].

A. Maas, “Constructing non-perturbative gauges using correlation functions”, Phys. Lett. B689 (2010) 107–111,

arXiv:0907.5185 [hep-lat].

A. Maas, “Describing gauge bosons at zero and finite temperature”, Phys.Rept. 524 (2013) 203–300, arXiv:1106.3942

[hep-ph].

A. Sternbeck and M. Müller-Preussker, “Lattice evidence for the family of decoupling solutions of Landau gauge

Yang-Mills theory”, Phys.Lett. B726 (2013) 396–403, arXiv:1211.3057 [hep-lat].

G. Eichmann, J. M. Pawlowski, and J. a. M. Silva, “On mass generation in Landau-gauge Yang-Mills theory”,

arXiv:2107.05352 [hep-ph].

V. Gribov, “Quantization of Nonabelian Gauge Theories”, Nucl.Phys. B139 (1978) 1.

I. M. Singer, “Some Remarks on the Gribov Ambiguity”, Commun. Math. Phys. 60 (1978) 7–12.

N. Vandersickel and D. Zwanziger, “The Gribov problem and QCD dynamics”, Phys.Rept. 520 (2012) 175–251,

arXiv:1202.1491 [hep-th].

S. Strauss, C. S. Fischer, and C. Kellermann, “Analytic structure of the Landau gauge gluon propagator”, Phys.Rev.Lett.

(2012) 252001, arXiv:1208.6239 [hep-ph].

C. S. Fischer and M. Q. Huber, “Landau gauge Yang-Mills propagators in the complex momentum plane”, Phys. Rev. D

no. 9, (2020) 094005, arXiv:2007.11505 [hep-ph].

J. Horak, J. Papavassiliou, J. M. Pawlowski, and N. Wink, “Ghost spectral function from the spectral Dyson-Schwinger

equation”, arXiv:2103.16175 [hep-th].

L. Schlessinger, “Use of Analyticity in the Calculation of Nonrelativistic Scattering Amplitudes”, Phys. Rev. 167 no. 3,

(1968) 1411.

R.-A. Tripolt, P. Gubler, M. Ulybyshev, and L. Von Smekal, “Numerical analytic continuation of Euclidean data”,

Comput. Phys. Commun. 237 (2019) 129–142, arXiv:1801.10348 [hep-ph].

A. Sternbeck, arXiv:hep-lat/0609016, PhD thesis, Humboldt-Universität zu Berlin, 2006.

A. Maas, “Constraining the gauge-fixed Lagrangian in minimal Landau gauge”, arXiv:1907.10435 [hep-lat].

A. Cucchieri, A. Maas, and T. Mendes, “Three-point vertices in Landau-gauge Yang-Mills theory”, Phys. Rev. D77

(2008) 094510, arXiv:0803.1798 [hep-lat].

A. Sternbeck, P.-H. Balduf, A. Kızılersu, O. Oliveira, P. J. Silva, J.-I. Skullerud, and A. G. Williams, “Triple-gluon and

quark-gluon vertex from lattice QCD in Landau gauge”, PoS LATTICE2016 (2017) 349, arXiv:1702.00612 [hep-lat].

A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodriguez-Quintero, and S. Zafeiropoulos, “On

the zero crossing of the three-gluon vertex”, Phys. Lett. B761 (2016) 444–449, arXiv:1607.01278 [hep-ph].

P. Boucaud, F. De Soto, J. Rodrı́guez-Quintero, and S. Zafeiropoulos, “Refining the detection of the zero crossing for the

three-gluon vertex in symmetric and asymmetric momentum subtraction schemes”, Phys. Rev. D95 no. 11, (2017)

, arXiv:1701.07390 [hep-lat].

L. D. Landau, “On the angular momentum of a system of two photons”, Dokl. Akad. Nauk SSSR 60 no. 2, (1948)

–209.

C.-N. Yang, “Selection Rules for the Dematerialization of a Particle Into Two Photons”, Phys. Rev. 77 (1950) 242–245.

Downloads

Published

2022-06-29

How to Cite

1.
Huber MQ, Fischer CS, Sanchis-Alelpuz H. Quenched glueballs in the DSE/BSE framework. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 29 [cited 2022 Dec. 9];3(3):0308086 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6159