The 3d O(4) model as an effective approach to the QCD phase diagram


  • Edgar López-Contreras Insituto de Ciencias Nucleares, UNAM
  • José Antonio García-Hernández Instituto de Ciencias Nucleares, UNAM
  • Elías Natanael Polanco-Euán Instituto de Ciencias Nucleares, UNAM
  • Wolfgang Bietenholz Instituto de Ciencias Nucleares, UNAM



QCD phase diagram, non-linear sigma model, lattice simulations


The QCD phase diagram is one of the most prominent outstanding puzzles within the Standard Model. Various experiments, which aim at its exploration beyond small baryon density, are operating or in preparation. From the theoretical side, this is an issue of non-perturbative QCD, and therefore of lattice simulations. However, a finite baryon density entails a technical problem (known as the “sign problem”), which has not been overcome so far. Here we present a study of an effective theory, the O(4) non-linear sigma model. It performs spontaneous symmetry breaking with the same Lie group structure as 2-flavor QCD in the chiral limit, which strongly suggests that they belong to the same universality class. Since we are interested in high temperature, we further assume dimensional reduction to the 3d O(4) model, which implies topological sectors. As pointed out by Skyrme, Wilczek and others, its topological charge takes the role of the baryon number. Hence the baryon chemical potential µB appears as an imaginary vacuum angle, which can be included in the lattice simulation without any sign problem. We present numerical results for the critical line in the chiral limit, and for the crossover in the presence of light quark masses. Their shapes are compatible with other predictions, but up to the value of about µB ≈ 300 MeV we do not find the notorious Critical Endpoint (CEP).


H.-T. Ding et al. (HotQCD Collaboration), Chiral phase transition temperature in (2+1)-Flavor QCD, Phys. Rev. Lett. 123 (2019) 062002

A.Yu. Kotov, M.P. Lombardo and A. Trunin, QCD transition at the physical point, and its scaling window from twisted mass Wilson fermions, arXiv:2105.09842 [hep-lat].

S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, K. K. Szabo, Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 1009 (2010) 073 T. Bhattacharya et al. (HotQCD Collaboration), QCD Phase Transition with Chiral Quarks and Physical Quark Masses, Phys. Rev. Lett. 113 (2014) 082001 A. Bazavov et al. (HotQCD Collaboration), Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15

D. Blaschke et al., Searching for a QCD mixed phase at the Nuclotron-based Ion Collider fAcility (NICA White Paper) 2014 V. Abgaryan et al. (MPD Collaboration), Status and initial physics performance studies of the MPD-NICA experiment, in preparation.

P. de Forcrand, Simulating QCD at finite density, PoS LAT2009 (2009) 010 L. Levkova, QCD at nonzero temperature and density, PoS LATTICE2011 (2011) 011 C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Rept. Prog. Phys. 81 (2018) 084301

C. Laflamme et al., CI P(N − 1) quantum field theories with alkaline-earth atoms in optical lattices, Annals Phys. 370 (2016) 117; Proposal for the Quantum Simulation of the CI P(2) Model on Optical Lattices, PoS LATTICE2015 (2016) 311

Z.F. Cui, J.L. Zhang and H.S. Zong, Proper time regularization and the QCD chiral phase transition, Sci. Rep. 7 (2017) 45937 J. Braun, M. Leonhardt and M. Pospiech, Fierz-complete NJL model study III: Emergence from quark-gluon dynamics, Phys. Rev. D 101 (2020) 036004

G.A. Contrera, A.G. Grunfeld and D. Blaschke, Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD, Eur. Phys. J. A 52 (2016) 231 K. Xu, Z. Li and M. Huang, QCD critical end point from a realistic PNJL model, EPJ Web Conf. 192 (2018) 00019 M. Motta, W.M. Alberico, A. Beraudo, P. Costa and R. Stiele, Exploration of the phase diagram and the thermodynamic properties of QCD at finite temperature and chemical potential with the PNJL effective model, J. Phys. Conf. Ser. 1667 (2020) 012029 Y.P. Zhao, S.Y. Zuo and C.M. Li, QCD chiral phase transition and critical exponents within the nonextensive Polyakov-Nambu-Jona-Lasinio model, Chin. Phys. C 45 (2021) 073105 A. Sarkar, P. Deb and R. Bose, Study of finite volume number density fluctuation at RHIC energies in PNJL model for the search of QCD Critical Point, arXiv:2202.00034 [hep-ph].

A. Ayala, S. Hernandez-Ortiz and L.A. Hernandez, QCD phase diagram from chiral symmetry restoration: analytic approach at high and low temperature using the linear sigma model with quarks, Rev. Mex. Fıs. 64 (2018) 302 A. Ayala, S. Hernandez-Ortiz, L.A. Hernandez, V. Knapp-Perez and R. Zamora, Fluctuating temperature and baryon chemical potential in heavy-ion collisions and the position of the critical end point in the effective QCD phase diagram, Phys. Rev. D 101 (2020) 074023 A. Ayala, B. Almeida Zamora, J.J. Cobos-Martınez, S. Hernandez-Ortiz, L.A. Hernandez, A. Raya and M.E. Tejeda-Yeomans, Collision energy dependence of the critical end point from baryon number fluctuations in the Linear Sigma Model with quarks, Eur. Phys. J. A 58 (2022) 87

O. DeWolfe, S.S. Gubser and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev. D 84 (2011) 126014 R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti and R. Rougemont, Critical point in the phase diagram of primordial quark-gluon matter from black hole physics, Phys. Rev. D 96 (2017) 096026 Z. Li, K. Xu and M. Huang, The entanglement properties of holographic QCD model with a critical end point, Chin. Phys. C 45 (2021) 013116

P. Kovacs and G. Wolf, Phase diagram and isentropic curves from the vector meson extended Polyakov quark meson model, Acta Phys. Polon. Supp. 10 (2017) 1107

C. Shi, Y.-L. Du, S.-S. Xu, X.-J. Liu and H.-S. Zong, Continuum study of the QCD phase diagram through an OPE-modified gluon propagator, Phys. Rev. D 93 (2016) 036006 B.L. Li, Z.F. Cui, B.W. Zhou, S. An, L.P. Zhang and H.S. Zong, Finite volume effects on the chiral phase transition from Dyson-Schwinger equations of QCD, Nucl. Phys. B 938 (2019) 298 Y.P. Zhao, R.R. Zhang, H. Zhang and H.S. Zong, Chiral phase transition from the Dyson-Schwinger equations in a finite spherical volume, Chin. Phys. C 43 (2019) 063101 C. Shi, X.- T. He, W.-B. Jia, Q.-W. Wang, S.-S. Xu and H.-S. Zong, Chiral transition and the chiral charge density of the hot and dense QCD matter, JHEP 06 (2020) 122 F. Gao and J.M. Pawlowski, QCD phase structure from functional methods Phys. Rev. D 102 (2020) 034027

Z.Q. Wu, J.L. Ping and H.S. Zong, QCD phase diagram at finite isospin and baryon chemical potentials with the self-consistent mean field approximation. Chin. Phys. C 45 (2021) 064102

E.S. Fraga, L.F. Palhares and P. Sorensen, Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data, Phys. Rev. C 84 (2011) 011903 N.G. Antoniou, F.K. Diakonos, X.N. Maintas and C.E. Tsagkarakis, Locating the QCD critical endpoint through finite-size scaling, Phys. Rev. D 97 (2018) 034015

R. D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 29.338. F. Wilczek, Application of the renormalization group to a second order QCD phase transition, Int. J. Mod. Phys. A 7 (1992) 3911 [Erratum: Int. J. Mod. Phys. A 7 (1992) 6951]. K. Rajagopal and F. Wilczek, Static and dynamic critical phenomena at a second order QCD phase transition, Nucl. Phys. B 399 (1993) 395 A. Yu. Kotov, M. P. Lombardo and A. Trunin, Gliding Down the QCD Transition Line, from Nf = 2 till the Onset of Conformality, Symmetry 13 (2021) 1833

W. Bietenholz, On the Isomorphic Description of Chiral Symmetry Breaking by Non-Unitary Lie Groups, Int. J. Mod. Phys. A 25 (2010) 1699

T. H. R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127; A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 G. S. Adkins, C. R. Nappi and E. Witten, Static properties of nucleons in the Skyrme model, Nucl. Phys. B 228 (1983) 552 I. Zahed and G.E. Brown, The Skyrme Model, Phys. Rept. 142 (1986) 1

B. Berg and M. Lüscher, Definition and Statistical Distributions of a Topological Number in the Lattice O(3) Sigma Model, Nucl. Phys. B 190 (1981) 412

J. Murakami, Volume formulas for a spherical tetrahedron, Proc. Amer. Math. Soc. 140 (2012) 3289

M. A. Nava Blanco, W. Bietenholz and A. Fernandez Tellez, Conjecture about the 2-Flavour QCD Phase Diagram, J. Phys. Conf. Ser. 912 (2017) 012048 M. A. Nava Blanco, Estudio del diagrama de fase de QCD con dos sabores usando el modelo 3d O(4), M.Sc. thesis, Benemerita Universidad Autonoma de Puebla, 2019.

U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett. 62 (1989) 361

C.M. Fortuin and P.W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models, Physica 57 (1972) 536

E. Lopez-Contreras, Phase Diagram of the 3d O(4) model as a conjecture for Quantum Chromodynamics in the chiral limit, B.Sc. thesis, Universidad Nacional Autonoma de Mexico, 2021.

K. Kanaya and S. Kaya, Critical exponents of a threedimensional O(4) spin model, Phys. Rev. D 51 (1995) 2404

M. Oevers, Kritisches Verhalten in O(4)-symmetrischen Spinmodellen und 2-flavour QCD, Diploma thesis, Universität Bielefeld, 1996.

J. Engels, L. Fromme and M. Seniuch, Correlation lengths and scaling functions in the three-dimensional O(4) model, Nucl. Phys. B 675 (2003) 533

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer, 1997.

J.-S. Wang, Clusters in the three-dimensional Ising model with a magnetic field, Physica A 161 (1989) 249

J.A. Garcıa-Hernandez, Conjecture about the Quantum Chromodynamics Phase Diagram with two Light Quark Flavors, B.Sc. thesis, Universidad Nacional Autonoma de Mexico, 2020.

J. A. Garcıa-Hernandez, E. Lopez-Contreras, E. N. Polanco-Euan and W. Bietenholz, Conjecture about the QCD phase diagram, PoS LAT2021 (2021) 595.




How to Cite

López-Contreras E, García-Hernández JA, Polanco-Euán EN, Bietenholz W. The 3d O(4) model as an effective approach to the QCD phase diagram. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 30 [cited 2022 Oct. 4];3(2):020727 1-13. Available from: