One loop mechanism for neutrinoless double beta hyperon decay

Authors

  • Gerardo Hernández Tomé Instituto de Física UNAM

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.020710

Keywords:

Neutrinos, hyperons, lepton number violation

Abstract

Motivated by the large dataset to be accumulated of hyperon pairs produced in decays of $\mathcal{O}(10^{10})$ $J/\psi$ and $\psi^\prime$ charmonia states in the BES-III collaboration, we revisited the predictions of $\Delta L=2$ decays of hyperons $B^-_i\to B^+_f\ell^-\ell'^-$ in the one-loop model mechanism involving Majorana neutrinos previously presented in \cite{Barbero:2002wm}. Unlike the previous work, by modeling the momentum transfer dependence of the hyperon form factors in the computation we provide finite results for the loop integration. Furthermore, since we keep finite masses for the neutrinos throughout the calculations, we are able to consider the effects of heavy Majorana neutrinos. Thus, our results are applied to a simple model that involves two Majorana heavy neutrinos in the framework of a low-scale seesaw model. In order to provide and compare additional predictions, we study an alternative model where $\Delta L=2$ decays are induced by the short-range effects of a scalar boson coupled to di-leptons.

References

i. The study of ∆L = 2 processes in decays of tau leptons [5–10, 10–12], pseudoscalar mesons [13–29], and Λb baryons [30–33] is mainly motivated by the resonant effect produced by an intermediate Majorana neutrino and their study in flavorfactories experiments.

ii. In order to avoid lengthy expressions, we omit here the expressions of the relevant C nj vr form factors in terms of PassarinoVeltman functions for the monopolar approximation. These expressions can be found in [3]. The one loop integration have been performed using the package Package-X [54] and evaluated numerically with Collier [55].

iii. The behavior of the total axial Cη ar form factors is very similar to the vector Cη vr ones. Our numerical results include all the

factors, although for r = 1, 2, A they are sub-dominant.

C. Barbero, G. Lopez Castro and A. Mariano, Double beta decay of Sigma- hyperons, Phys. Lett. B 566 (2003), 98; C. Barbero, L. F. Li, G. Lopez Castro and A. Mariano, Delta L = 2 hyperon semileptonic decays, Phys. Rev. D 76 (2007), 116008.

C. Barbero, L. F. Li, G. Lopez Castro and A. Mariano, Matrix elements of four-quark operators and ∆L = 2 hyperon decays, Phys. Rev. D 87 (2013) no.3, 036010.

G. Hernandez-Tome, G. L. Castro and D. Portillo-Sanchez, ∆L=2 hyperon decays induced by Majorana neutrinos and doubly-charged scalars, [arXiv:2112.02227 [hep-ph]].

P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, no.8, 083C01 (2020).

A. Ilakovac, Probing lepton number / flavor violation in semileptonic τ decays into two mesons, Phys. Rev. D 54, 5653-5673 (1996).

V. Gribanov, S. Kovalenko and I. Schmidt, Sterile neutrinos in tau lepton decays, Nucl. Phys. B 607, 355-368 (2001).

A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05, 030 (2009).

J. C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys.

B 853, 80-104 (2011).

G. Lopez Castro and N. Quintero, Lepton number violating four-body tau lepton decays, Phys. Rev. D 85, 076006 (2012)

[erratum: Phys. Rev. D 86, 079904 (2012)].

C. S. Kim, G. Lopez Castro and D. Sahoo, Discovering intermediate mass sterile neutrinos through τ− → π−µ−e+ν (or ν¯) decay, Phys. Rev. D 96 (2017) no.7, 075016.

H. Yuan, Y. Jiang, T. h. Wang, Q. Li and G. L. Wang, Testing the nature of neutrinos from four-body τ decays, J. Phys. G 44

(2017) no.11, 115002.

G. Lopez Castro and N. Quintero, Lepton number violation in tau lepton decays, Nucl. Phys. B Proc. Suppl. 253-255 (2014),

-15.

G. Cvetic, C. Dib, S. K. Kang and C. S. Kim, Probing Majorana neutrinos in rare K and D, Ds, B, Bc meson decays, Phys. Rev. D 82, 053010 (2010).

N. Quintero, G. Lopez Castro and D. Delepine, Lepton number violation in top quark and neutral B meson decays, Phys. Rev. D 84 (2011), 096011 [erratum: Phys. Rev. D 86 (2012), 079905].

H. Yuan, T. Wang, G. L. Wang, W. L. Ju and J. M. Zhang, Lepton-number violating four-body decays of heavy mesons, JHEP 08 (2013), 066.

G. L. Castro and N. Quintero, Bounding resonant Majorana neutrinos from four-body B and D decays, Phys. Rev. D 87, 077901 (2013).

G. Cvetic, C. S. Kim and J. Zamora-Sa ˇ a, CP violation in lepton number violating semihadronic decays of K, D, Ds, B, Bc, Phys. Rev. D 89 (2014) no.9, 093012.

G. Cvetic, C. S. Kim, R. Kogerler and J. Zamora-Saa, Oscillation of heavy sterile neutrino in decay of B → µeπ, Phys. Rev. D 92 (2015), 013015.

G. Cvetic, C. Dib, C. S. Kim and J. Zamora-Saa, Probing the Majorana neutrinos and their CP violation in decays of charged

scalar mesons π, K, D, Ds, B, Bc, Symmetry 7 (2015), 726-773.

S. Mandal and N. Sinha, Favoured Bc Decay modes to search for a Majorana neutrino, Phys. Rev. D 94 (2016) no.3, 033001.

G. Moreno and J. Zamora-Saa, Rare meson decays with three pairs of quasi-degenerate heavy neutrinos, Phys. Rev. D 94

(2016) no.9, 093005.

G. Cvetic and C. S. Kim, Rare decays of B mesons via on-shell sterile neutrinos, Phys. Rev. D 94 (2016) no.5, 053001 [erratum: Phys. Rev. D 95 (2017) no.3, 039901].

G. Cvetic and C. S. Kim, Sensitivity limits on heavy-light mixing |UµN | 2 from lepton number violating B meson decays, Phys. Rev. D 96 (2017) no.3, 035025 [erratum: Phys. Rev. D 102 (2020) no.1, 019903; erratum: Phys. Rev. D 102 (2020) no.3, 039902]

G. Cvetic, F. Halzen, C. S. Kim and S. Oh, Anomalies in (semi)-leptonic B decays B ± → τ ±ν, B ± → Dτ ±ν and B± → D∗τ ±ν, and possible resolution with sterile neutrino, Chin. Phys. C 41 (2017) no.11, 113102.

H. Yuan, T. Wang, Y. Jiang, Q. Li and G. L. Wang, Four-body decays of B meson with lepton number violation, J. Phys. G 45 (2018) no.6, 065002.

H. l. Li, P. c. Lu, C. f. Qiao, Z. g. Si and Y. Wang, Study Standard Model and Majorana Neutrino Contributions to B + → K(∗)±µ+µ∓, Chin. Phys. C 43 (2019) no.2, 023101.

T. Wang, Y. Jiang, Z. H. Wang and G. L. Wang, Doubly-charged scalar in rare decays of the Bc meson, Phys. Rev. D 97 (2018)

no.11, 115031.

C. S. Kim, Y. Kwon, D. Lee, S. Oh and D. Sahoo, Probing sterile neutrinos in B(D) meson decays at Belle II (BESIII), Eur. Phys. J. C 80 (2020) no.8, 730.

G. Cvetic, C. S. Kim, S. Mendizabal and J. Zamora-Saa, Exploring CP-violation, via heavy neutrino oscillations, in rare B meson decays at Belle II, Eur. Phys. J. C 80 (2020) no.11, 1052.

J. Mejia-Guisao, D. Milanes, N. Quintero and J. D. RuizAlvarez, Exploring GeV-scale Majorana neutrinos in lepton number violating Λ0 b baryon decays, Phys. Rev. D 96 (2017) no.1, 015039.

D. Das and J. Das, CP violation with a GeV-scale Majorana neutrino in Λb → (Λ+c , p+)π+µ−µ− decays, Phys. Rev. D 103 (2021) no.7, 073001.

D. Das and J. Das, Sterile neutrinos in Λ 0 b →(Λ+c , p+)−1-2 + 3 ν decays, [arXiv:2108.07338 [hep-ph]].

G. Zhang and B. Q. Ma, Searching for lepton number violating Λ baryon decays mediated by GeV-scale Majorana neutrino

with LHCb, Phys. Rev. D 103 (2021) no.3, 033004.

A. Garcia, P. Kielanowski and A. Bohm, THE BETA DECAY OF HYPERONS, Lect. Notes Phys. 222 (1985), 1-173.

N. Cabibbo, E. C. Swallow and R. Winston, Semileptonic hyperon decays, Ann. Rev. Nucl. Part. Sci. 53 (2003), 39-75.

F. Schlumpf, Beta decay of hyperons in a relativistic quark model, Phys. Rev. D 51 (1995), 2262-2270.

D. Rein and L. M. Sehgal, Long Distance Contributions to the Decay K+ —> pi+ Neutrino anti-neutrino, Phys. Rev. D 39 (1989), 3325.

A. Atre, V. Barger and T. Han, Upper bounds on lepton-number violating processes, Phys. Rev. D 71, 113014 (2005).

H. B. Li, Prospects for rare and forbidden hyperon decays at BESIII, Front. Phys. (Beijing) 12, no.5, 121301 (2017) [erratum: Front. Phys. (Beijing) 14, no.6, 64001 (2019)].

L. F. Li, Delta Q = 2 Hyperon Decays, [arXiv:0706.2815 [hepph]]. The Search for neutrinoless double beta decay, Probing Majorana neutrino CP phases and masses in neutrinoantineutrino conversion,

A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995), 491.

G. Hernandez-Tome, J. I. Illana, M. Masip, G. Lopez Castro and P. Roig, Effects of heavy Majorana neutrinos on lepton flavor violating processes, Phys. Rev. D 101 (2020) no.7, 075020. G. Hernandez-Tom ´ e, J. I. Illana and M. Masip, The ´ ρ parameter and H

→ `i`j in models with TeV sterile neutrinos, Phys. Rev. D 102 (2020) no.11, 113006.

E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez Pavon, Global constraints on heavy neutrino mixing, JHEP 08 (2016), 033.

A. M. Coutinho, A. Crivellin and C. A. Manzari, Global Fit to Modified Neutrino Couplings and the Cabibbo-Angle Anomaly, Phys. Rev. Lett. 125 (2020) no.7, 071802. Bounds on effective Majorana neutrino masses at HERA, Towards complete leading-order predictions for neutrinoless double β decay,

J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22 (1980), 2227.

P. Fileviez Perez, T. Han, G. y. Huang, T. Li and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008), 015018.

A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, Phys. Rev. D 9, 3471 (1974); A. Chodos, R. L. Jaffe, K. Johnson and C. B. Thorn, Phys. Rev. D 10, 2599 (1974).

M. L. Swartz, Limits on Doubly Charged Higgs Bosons and Lepton Flavor Violation, Phys. Rev. D 40, 1521 (1989).

P. S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, Probing TeV scale origin of neutrino mass at future lepton colliders via neutral and doubly-charged scalars, Phys. Rev. D 98, no.7, 075028 (2018).

G. Abbiendi et al. [OPAL], Search for the single production of doubly charged Higgs bosons and constraints on their couplings from Bhabha scattering, Phys. Lett. B 577, 93-108 (2003).

A. G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays tau —> anti-l ll and mu —> e gamma in the Higgs Triplet Model, Phys. Rev. D 79, 113010 (2009).

N. Quintero, Lepton-number-violating decays of heavy flavors induced by doubly-charged Higgs boson, Phys. Rev. D 87 (2013) no.5, 056005.

P. S. B. Dev, C. M. Vila and W. Rodejohann, Naturalness in testable type II seesaw scenarios, Nucl. Phys. B 921, 436-453 (2017).

Low scale type II seesaw: Present constraints and prospects for displaced vertex searches, Revisiting Type-II see-saw: Present Limits and Future Prospects at LHC,

H. H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197, 276-290 (2015).

A. Denner, S. Dittmaier and L. Hofer, Collier: a fortranbased Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212, 220-238 (2017).

Downloads

Published

2022-03-31

How to Cite

1.
Hernández Tomé G. One loop mechanism for neutrinoless double beta hyperon decay. Supl. Rev. Mex. Fis. [Internet]. 2022 Mar. 31 [cited 2025 Jan. 15];3(2):020710 1-8. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6174