Thermal hadron resonances in chiral and U(1)A restoration

Authors

  • Angel Gómez Nicola Universidad Complutense de Madrid
  • J. Ruiz de Elvira Universidad Complutense de Madrid
  • A. Vioque-Rodríguez Universidad Complutense de Madrid

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.03080119

Keywords:

Hadron physics, QCD phase diagram, thermal resonances

Abstract

We review recent work on thermal resonances and their connection with chiral symmetry and U(1)A restoration within the QCD phase diagram. In particular, the ƒ0 (500) and K∗ 0 (700) states generated from ππ and πK scattering within Unitarized Chiral Perturbation Theory (ChPT) at finite temperature allow one to describe scalar susceptibilities, which combined with Ward Identities yield interesting conclusions regarding the interplay between chiral and U(1)A restoration, key to understand the nature of the transition.

References

Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit II. JHEP 0906 (2009) 088, https://doi.org/10.1088/1126-6708/2009/06/088.

S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katzc, S. Krieg, C. Ratti, K.K. Szabo, Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 1009 (2010) 073. https://doi.org/10.1007/JHEP09(2010)073

A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T. Ding, S. Gottlieb, R. Gupta and P. Hegde et al. [HotQCD Collaboration], The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503. https://doi.org/10.1103/PhysRevD.85.054503

C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Rept. Prog. Phys. 81 (2018) 084301. https://doi.org/10.1088/1361-6633/aabb97

A. Bazavov et al. [USQCD Collaboration], Hot-dense Lattice QCD: USQCD whitepaper 2018, Eur. Phys. J. A 55 (2019) 194. https://doi.org/10.1140/epja/i2019-12922-0

A. Gómez Nicola, Light quarks at finite temperature: chiral restoration and the fate of the U(1)A symmetry, Eur. Phys. J. ST 230 (2021) 1645. https://doi.org/10.1140/epjs/s11734-021-00147-4

A. Gómez Nicola, Aspects on Effective Theories and the QCD Transition, Symmetry 12 (2020) 945. https://doi.org/10.3390/sym12060945

F. Karsch, K. Redlich, A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549. https://doi.org/10.1140/epjc/s2003-01228-y

P. Huovinen and P. Petreczky, QCD Equation of State and Hadron Resonance Gas, Nucl. Phys. A 837 (2010) 26. https://doi.org/10.1016/j.nuclphysa.2010.02.015

J. Jankowski, D. Blaschke and M. Spalinski, Chiral condensate in hadronic matter, Phys. Rev. D 87 (2013) 105018. https://doi.org/10.1103/PhysRevD.87.105018

A. Andronic, P. Braun-Munzinger, J. Stachel and M. Winn, Interacting hadron resonance gas meets lattice QCD, Phys. Lett. B 718 (2012), 80. https://doi.org/10.1016/j.physletb.2012.10.001

P. Huovinen and P. Petreczky, Hadron resonance gas with repulsive interactions and fluctuations of conserved charges, Phys. Lett. B 777 (2018) 125. https://doi.org/10.1016/j.physletb.2017.12.001

R. D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338. https://doi.org/10.1103/PhysRevD.29.338

D. J. Gross, R. D. Pisarski and L. G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43. https://doi.org/10.1103/RevModPhys.53.43

E. V. Shuryak, Which chiral symmetry is restored in hot QCD?, Comments Nucl. Part. Phys. 21 (1994) 235. [arXiv:hepph/9310253 [hep-ph]].

T. D. Cohen, The High temperature phase of QCD and U(1)- A symmetry, Phys. Rev. D 54 (1996), R1867-R1870. https://doi.org/10.1103/PhysRevD.54.R1867

S. H. Lee and T. Hatsuda, UA(1) symmetry restoration in QCD with Nf flavors, Phys. Rev. D 54 (1996) R1871. https://doi.org/10.1103/PhysRevD.54.R1871

A. Pelissetto and E. Vicari, Relevance of the axial anomaly at the finite-temperature chiral transition in QCD, Phys. Rev. D 88, 105018 (2013). https://doi.org/10.1103/PhysRevD.88.105018

J. I. Kapusta, D. Kharzeev and L. D. McLerran, The Return of the prodigal Goldstone boson, Phys. Rev. D 53 (1996) 5028. https://doi.org/10.1103/PhysRevD.53.5028

T. Csorgo, R. Vertesi and J. Sziklai, Indirect observation of an in-medium η ’ mass reduction in √ sNN = 200 GeV Au+Au collisions, Phys. Rev. Lett. 105 (2010) 18230. https://doi.org/10.1103/PhysRevLett.105.182301

A. Y. Kotov, M. P. Lombardo and A. M. Trunin, Fate of the η 0 in the quark gluon plasma, Phys. Lett. B 794 (2019) 83. https://doi.org/10.1016/j.physletb.2019.05.035

G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, H. Matsufuru and J. I. Noaki, Finite temperature study of the axial U(1) symmetry on the lattice with overlap fermion formulation, Phys. Rev. D 87 (2013) 114514 [erratum: Phys. Rev. D 88 (2013) 019901]. https://doi.org/10.1103/PhysRevD.87.114514

A. Tomiya, G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko and J. Noaki, Evidence of effective axial U(1) symmetry restoration at high temperature QCD,’ Phys. Rev. D 96 (2017) 034509 https://doi.org/10.1103/PhysRevD.96.034509

B. B. Brandt, A. Francis, H. B. Meyer, O. Philipsen, D. Robaina and H. Wittig, On the strength of the UA(1) anomaly at the chiral phase transition in Nf = 2 QCD, JHEP 12 (2016)158, https://doi.org/10.1007/JHEP12(2016)158

M. I. Buchoff, M. Cheng, N. H. Christ, H. T. Ding, C. Jung, F. Karsch, Z. Lin, R. D. Mawhinney, S. Mukherjee and P. Petreczky, et al., QCD chiral transition, U(1)A symmetry and the dirac spectrum using domain wall fermions, Phys. Rev. D 89 (2014) 054514, https://doi.org/10.1103/PhysRevD.89.054514

S. M. Berman, Unification of photoproduction and electroproduction, Phys. Rev. 135 (1964) B1249-B1254, https://doi.org/10.1103/PhysRev.135.B1249

R. Garcia-Martin, R. Kaminski, J. R. Peláez and J. Ruiz de Elvira, Precise determination of the f0(600) and f0(980) pole parameters from a dispersive data analysis, Phys. Rev. Lett. 107 (2011) 072001, https://doi.org/10.1103/PhysRevLett.107.072001

P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) 083C01. https://doi.org/10.1093/ptep/ptaa104

J. R. Peláez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary f0(500) resonance, Phys. Rept. 658 (2016) 1. https://doi.org/10.1016/j.physrep.2016.09.001

J. R. Peláez, A. Rodas and J. R. de Elvira, Precision dispersive approaches versus unitarized chiral perturbation theory for the lightest scalar resonances σ/f0(500) and κ/K∗ 0 (700), Eur. Phys. J. ST 230 (2021) 1539, https://doi.org/10.1140/epjs/s11734-021-00142-9

A. Gómez Nicola, F. J. Llanes-Estrada and J. R. Peláez, Finite temperature pion scattering to one loop in chiral perturbation theory, Phys. Lett. B 550 (2002) 55. https://doi.org/10.1016/S0370-2693(02)02959-3

A. Dobado, A. Gómez Nicola, F. J. Llanes-Estrada and J. R. Peláez, Thermal rho and sigma mesons from chiral symmetry and unitarity, Phys. Rev. C 66 (2002) 055201. https://doi.org/10.1103/PhysRevC.66.055201

A. Gómez Nicola, J. Ruiz de Elvira and R. Torres Andres, Chiral Symmetry Restoration and Scalar-Pseudoscalar partners in QCD, Phys. Rev. D 88 (2013) 076007. https://doi.org/10.1103/PhysRevD.88.076007

S. Ferreres-Sole, A. Gómez Nicola and A. Vioque-Rodríguez, Role of the thermal f0(500) in chiral symmetry restoration, Phys. Rev. D 99 (2019) 036018. https://doi.org/10.1103/PhysRevD.99.036018

A. Gómez Nicola, J. R. Peláez and J. Ruiz de Elvira, Non-factorization of four-quark condensates at low energies within Chiral Perturbation Theory, Phys. Rev. D 82 (2010) 074012. https://doi.org/10.1103/PhysRevD.82.074012

A. Gómez Nicola, J. R. Peláez and J. Ruiz de Elvira, Scalar susceptibilities and four-quark condensates in the meson gas within Chiral Perturbation Theory, Phys. Rev. D 87 (2013), 016001 https://doi.org/10.1103/PhysRevD.87.016001

A. Gómez Nicola, J. Ruiz de Elvira, A. Vioque-Rodríguez and D. Alvarez-Herrero, The role of strangeness in chiral and U(1)A restoration, Eur. Phys. J. C 81 (2021) 637. https://doi.org/10.1140/epjc/s10052-021-09458-1

J. A. Oller, The Mixing angle of the lightest scalar nonet, Nucl. Phys. A 727 (2003), 353. https://doi.org/10.1016/j.nuclphysa.2003.08.002

J. Ruiz de Elvira, U. G. Meißner, A. Rusetsky and G. Schierholz, Feynman–Hellmann theorem for resonances and the quest for QCD exotica, Eur. Phys. J. C 77 (2017) 659. https://doi.org/10.1140/epjc/s10052-017-5237-3

A. Gómez Nicola and J. Ruiz de Elvira, Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses, JHEP 1603 (2016)186 (2016). https://doi.org/10.1007/JHEP03(2016)186

A. Gómez Nicola and J. Ruiz de Elvira, Patterns and partners for chiral symmetry restoration, Phys. Rev. D 97 (2018) 074016. https://doi.org/10.1103/PhysRevD.97.074016

A. Gómez Nicola and J. Ruiz De Elvira, Chiral and U(1)A restoration for the scalar and pseudoscalar meson nonets, Phys. Rev. D 98 (2018) 014020. https://doi.org/10.1103/PhysRevD.98.014020

M. Ishii, H. Kouno and M. Yahiro, Model prediction for temperature dependence of meson pole masses from lattice QCD results on meson screening masses, Phys. Rev. D 95 (2017) 114022. https://doi.org/10.1103/PhysRevD.95.114022

A. Gómez Nicola, J. Ruiz De Elvira and A. Vioque-Rodríguez, The QCD topological charge and its thermal dependence: the role of the η 0 , JHEP 11 (2019) 086. https://doi.org/10.1007/JHEP11(2019)086

C. Bonati, M. D’Elia, M. Mariti, G. Martinelli, M. Mesiti, F. Negro, F. Sanfilippo and G. Villadoro, Axion phenomenology and θ-dependence from Nf = 2 + 1 lattice QCD,’ JHEP 03 (2016) 155. https://doi.org/10.1007/JHEP03(2016)155

S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor and F. Pittler, et al. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69-71. https://doi.org/10.1038/nature20115

Downloads

Published

2022-06-18

How to Cite

1.
Gómez Nicola A, Ruiz de Elvira J, Vioque-Rodríguez A. Thermal hadron resonances in chiral and U(1)A restoration. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 18 [cited 2022 Dec. 9];3(3):03080119 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6213