Nonlinear Regge trayectories in the context of bottom-up holography


  • Miguel Angel Martin Contreras Universidad de Valparaiso
  • Alfredo Vega Universidad de Valparaiso



AdS/QCD, Gauge/Gravity duality, meson spectroscopy


Motivated by the non-holographic phenomenology, where the mesonic constituent mass breaks linearity in Regge trajectories, we discuss how to implement nonlinear Regge trajectories by deforming the static (monoparametric) quadratic dilaton into a non-quadratic one. This deformation adds an extra parameter into the dilaton, which measures the constituent mass effect, accounting for nonlinearity in the hadronic trajectory. We applied this model to the description of the isovector multiplet spectrum. The set of isovector parameters defines a set of hadronic calibration curves for the dilaton slope and linearity deviation parameter, allowing us to extrapolate the model to other vector states, such as heavy-light mesons or vector non-qq¯ hadrons. In other words, this approach allows us to consider the hadronic inner structure by modifying the dilaton profile.


J. K. Chen, “Structure of the meson Regge trajectories,” Eur. Phys. J. A 57, no.7, 238 (2021) doi:10.1140/epja/s10050-021-

-y [arXiv:2102.07993 [hep-ph]].

S. S. Afonin, “Regge trajectories in light and heavy mesons: The pattern of appearances and possible dynamical explana-

tions,” doi:10.1142/9789811219313 0018 [arXiv:2009.05378 [hep-ph]].

A. Karch, E. Katz, D. T. Son and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D 74,

(2006) doi:10.1103/PhysRevD.74.015005 [arXiv:hep-ph/0602229 [hep-ph]].

N. R. F. Braga, M. A. Martin Contreras, and S. Diles, “Decay constants in soft wall AdS/QCD revisited,” Phys. Lett.

B 763, 203-207 (2016) doi:10.1016/j.physletb.2016.10.046 [arXiv:1507.04708 [hep-th]].

E. Folco Capossoli, M. A. Mart ́ın Contreras, D. Li, A. Vega, and H. Boschi-Filho, “Hadronic spectra from deformed AdS backgrounds,” Chin. Phys. C 44, no.6, 064104 (2020) doi:10.1088/1674-1137/44/6/064104 [arXiv:1903.06269 [hep-


M. A. Martin Contreras and A. Vega, “Nonlinear Regge trajectories with AdS/QCD,” Phys. Rev. D 102, no.4, 046007

(2020) doi:10.1103/PhysRevD.102.046007 [arXiv:2004.10286 [hep-ph]].

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, “The XY Z states: experimental and theoretical status and perspectives,” Phys. Rept. 873, 1-154 (2020) doi:10.1016/j.physrep.2020.05.001 [arXiv:1907.07583 [hep-ex]].

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183-386 (2000) doi:10.1016/S0370-1573(99)00083-6 [arXiv:hep-th/9905111 [hep-th]].

S. S. Afonin and I. V. Pusenkov, “Universal description of radially excited heavy and light vector mesons,” Phys. Rev. D 90, no.9, 094020 (2014) doi:10.1103/PhysRevD.90.094020 [arXiv:1411.2390 [hep-ph]].

P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2020, no.8, 083C01 (2020) doi:10.1093/ptep/ptaa104




How to Cite

Martin Contreras MA, Vega A. Nonlinear Regge trayectories in the context of bottom-up holography. Supl. Rev. Mex. Fis. [Internet]. 2022 Aug. 3 [cited 2022 Dec. 9];3(3):0308017 1-5. Available from: