The light-quark mass dependence of the nucleon axial charge

Authors

  • Fernando Alvarado IFIC
  • L. Alvarez-Ruso IFIC

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308095

Abstract

The light-quark mass dependence of the nucleon axial isovector charge (gA) has been analysed up to NNLO, O(p4), in relativistic chiral perturbation theory using extended-on-mass-shell renormalization, without and with explicit Delta(1232) degrees of freedom. In the Delta-less case at this order, the gA(Mpi)  dependence of lattice QCD simulations cannot be reproduced using low energy constants extracted from pion-nucleon phenomenology. A good description of these LQCD data is only accomplished in the theory with Delta. From this fit we obtain gA(Mpiphys)=1.260(12) close to the experimental results and d16= -0.88(88) GeV-2 in agreement with pi N-> pi pi N. The sizeable errors are of theoretical origin, reflecting the difference between O(p3) and O(p4) at large Mpi.

References

Mikhail Gorchtein and Chien-Yeah Seng. Dispersion relation analysis of the radiative corrections to gA in the neutron β- decay. JHEP, 10 (2021) 053.

Y. Aoki et al., FLAG Review 2021 (2021) 11.

Silas R. Beane and Martin J. Savage. Nucleon properties at finite lattice spacing in chiral perturbation theory. Phys. Rev. D 68 (2003) 114502.

Silas R. Beane and Martin J. Savage. Baryon axial charge in a finite volume. Phys. Rev. D 70 (2004 074029).

Brian C. Tiburzi. Time Dependence of Nucleon Correlation Functions in Chiral Perturbation Theory. Phys. Rev. D 80 (2009) 014002.

Oliver Bar. Chiral perturbation theory and nucleon-pionstate contaminations in lattice QCD. Int. J. Mod. Phys. A, 32 (2017) 1730011.

G. S. Bali et al., Nucleon axial structure from lattice QCD. JHEP, 05 (2020) 126.

S. R. Beane and Martin J. Savage. The Quark mass dependence of two nucleon systems. Nucl. Phys. A, 717 (2003) 91.

J. C. Berengut et al., Varying the light quark mass: impact on the nuclear force and Big Bang nucleosynthesis. Phys. Rev. D, 87 (2013) 085018.

E. Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee, and Ulf-G. Meiβner. Dependence of the triple-alpha process on the fundamental constants of nature. Eur. Phys. J. A 49 (2013) 82.

F. Alvarado and L. Alvarez-Ruso, The light-quark mass dependence of the nucleon axial charge and pion-nucleon scattering phenomenology. arXiv, 2112.14076, (2021).

T. Fuchs, J. Gegelia, G. Japaridze, and S. Scherer, Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D 68 (2003) 056005.

D. Siemens et al., Elastic and inelastic pionnucleon scattering to fourth order in chiral perturbation theory. Phys. Rev. C 96 (2017) 055205.

D. Siemens et al., Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look. Phys. Rev. C 94 (2016) 014620.

C. C. Chang et al., A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics. Nature, 558 (2018) 91.

Tim Harris et al., Nucleon isovector charges and twist-2 matrix elements with Nf = 2 + 1 dynamical Wilson quarks. Phys. Rev. D 100 (2019) 034513.

S. Park et al., Precision Nucleon Charges and Form Factors Using 2+1-flavor Lattice QCD. arXiv 2103 (2021) 05599.

Yun-Hua Chen, De-Liang Yao, and H. Q. Zheng, Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 87 (2013) 054019.

De-Liang Yao et al., Pionnucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances. JHEP, 05 (2016) 038

V. Bernard and Ulf-G. Meissner, The Nucleon axialvector coupling beyond one loop. Phys. Lett. B 639 (2006) 278.

M. Procura, B. U. Musch, T. R. Hemmert, and W. Weise, Chiral extrapolation of g(A) with explicit Delta(1232) degrees of freedom. Phys. Rev. D, 75 (2007) 014503.

S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and A. Thapaliya, Bayesian parameter estimation for effective field theories. J. Phys. G 43 (2016) 074001.

A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model. Nucl. Phys. B 234 (1984) 189.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, volume 830 (2012).

E. Epelbaum, H. Krebs, and U. G. Meiβner. Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order. Eur. Phys. J. A, 51 (2015) 53.

L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. J. Vicente-Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data. Phys. Rev. D, 88 (2013) 054507.

Matthias F. M. Lutz, Ulrich Sauerwein, and Rob G. E. Timmermans, On the axial-vector form factor of the nucleon and chiral symmetry. Eur. Phys. J. C, 80 (2020) 844.

Downloads

Published

2022-06-13

How to Cite

1.
Alvarado F, Alvarez-Ruso L. The light-quark mass dependence of the nucleon axial charge. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 13 [cited 2025 Jan. 22];3(3):0308095 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6234