Accessing pion GPDs through the Sullivan process: is it feasible?

Authors

  • Jose Mannuel Morgado Chávez Dpto. Ciencias Integradas and CEAFMC, Universidad de Huelva, E-21071 Huelva, Spain
  • Valerio Bertone Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
  • Maxime Defurne Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
  • Feliciano De Soto Dpto. Sistemas Fı́sicos, Quı́micos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
  • Cédric Mezrag Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
  • Hervé Moutarde Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
  • José Rodríguez Quintero Dpto. Ciencias Integradas and CEAFMC, Universidad de Huelva, E-21071 Huelva, Spain
  • Jorge Segovia Dpto. Sistemas Fı́sicos, Quı́micos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308099

Keywords:

Non-perturbative QCD, DVCS, CFFs, EIC, Sullivan process

Abstract

Describing hadronic structure is one of the most intriguing problems in physics. In this respect, generalized parton distributions (GPDs) constitute an outstanding tool, allowing to draw “three dimensional pictures” of hadron’s inside. Starting from contemporary models for pion’s GPDs fulfilling all constraints imposed by QCD, we compute Compton form factors of pions subjected to deeply virtual Compton scattering. We show CFF’s behaviour to be gluon-dominated at EIC’s kinematics. Finally we evaluate lepton-beam-spin asymmetries in the Sullivan process, demonstrating the existence of such and thus triggering optimism about the possibility of probing pion’s 3D structure at electron-ion colliders.

References

A. C. Aguilar et al., Pion and Kaon Structure at the ElectronIon Collider. Eur. Phys. J. A, 55 (2019)190.

C. D. Roberts, D. G. Richards, T. Horn, and L. Chang, Insights into the emergence of mass from studies of pion and kaon structure. Prog. Part. Nucl. Phys., 120 (2021) 103883.

R. A. Montgomery et al., Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab. AIP Conf. Proc., 1819 (2017) 030004.

J. Arrington et al., Revealing the structure of light pseudoscalar mesons at the electron-ion collider. J. Phys. G, 48 (2021) 075106.

R. Abdul-Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. arxiv:2103.05419, 3 (2021).

D. P. Anderle et al., Electron-ion collider in China. Front. Phys. (Beijing), 16 (2021) 64701.

B. Adams et al., Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER). 8 (2018).

J. D. Sullivan. One pion exchange and deep inelastic electron-nucleon scattering. Phys. Rev. D, 5 (1972) 1732.

D. Amrath, M. Diehl, and J.-P. Lansberg, Deeply virtual Compton scattering on a virtual pion target. Eur. Phys. J., C 58 (2008) 179.

X. Ji, Deeply virtual Compton scattering. Phys. Rev. D 55 (1997) 7114.

D. Müeller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Horejsi, Wave functions, evolution equations and evolution kernels from light ray operators of QCD. Fortsch. Phys. 42 (1994) 101.

A.V. Radyushkin. Nonforward parton distributions. Phys. Rev. D 56 (1997) 5524.

M. Diehl. Generalized parton distributions. Phys. Rept. 388 (2003) 41.

M. Burkardt. Impact parameter dependent parton distributions and off forward parton distributions for. Phys. Rev. D 62 (2000) 071503. [Erratum: Phys. Rev.D66,119903(2002)].

X. Ji. Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett., 78 (1997) 610.

V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, and P. Sznajder, Deconvolution problem of deeply virtual Compton scattering. Phys. Rev. D, 103 (2021) 114019.

V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, and P. Sznajder, Shadow generalized parton distributions: a practical approach to the deconvolution problem of DVCS. In 28th International Workshop on Deep Inelastic Scattering and Related Subjects, 7 (2021).

N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez- Quintero, Covariant Extension of the GPD overlap representation at low Fock states. Eur. Phys. J.C 77 (2017) 906.

J. M. Morgado et al., Pion generalized parton distributions: A path toward phenomenology, Phys. Rev. D 105 (2022) 094012. https://doi.org/10.1103/PhysRevD.105.094012

J. M. Morgado et al., Accessing the pion 3D structure at US and China Electron-Ion Colliders. Phys. Rev. Lett. 128 (2022) 202501. https://doi.org/10.1103/PhysRevLett.128.202501.

S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons. Phys. Rev., C 97 (2018) 015203.

G. M. Huber et al., Charged pion form-factor between Q**2 = 0.60-GeV**2 and 2.45-GeV**2. II. Determination of, and results for, the pion form-factor. Phys. Rev. C 78 (2008) 045203.

A. V. Belitsky and D. Müeller, Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82 (2010) 074010.

B. Pire, L. Szymanowski, and J. Wagner, NLO corrections to timelike, spacelike and double deeply virtual Compton scattering. Phys.Rev. D 83 (2011) 034009.

J. C. Collins and A. Freund, Proof of factorization for deeply virtual Compton scattering in QCD. Phys. Rev. D 59 (1999) 074009.

X. Ji and J. Osborne, One loop corrections and all order factorization in deeply virtual Compton scattering. Phys. Rev. D 58 (1998) 094018.

A. V. Belitsky, D. Müeller, and A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629 (2002) 323.

A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller. Singlespin asymmetries: The Trento conventions. Phys. Rev. D 7 (2004) 117504.

A.V. Belitsky and A.V. Radyushkin. Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418 (2005) 1.

J.-L. Zhang et al., Measures of pion and kaon structure from generalised parton distributions. Phys. Lett. B, 815 (2021) 136158.

K. Raya, Z.-F. Cui, L. Chang, J. M. Morgado, C. D. Roberts, and J. Rodriguez-Quintero. Revealing pion and kaon structure via generalised parton distributions. arXiv:2109.11686, 9 (2021).

N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez- Quintero. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities. Phys. Lett. B 780 (2018) 287.

M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions. Phys. Rev. D, 101 (2020) 054014.

P. C. Barry, Chueng-Ryong Ji, N. Sato, and W. Melnitchouk. Global QCD analysis of pion parton distributions with threshold resummation. arXiv:2108.05822, 8 (2021).

M. Aicher, A. Schafer, and W. Vogelsang. Soft-gluon resummation and the valence parton distribution function of the pion. Phys. Rev. Lett., 105 (2010) 252003.

Z. F. Cui et al., Concerning pion parton distributions. 12 (2021).

M. Diehl and T. Gousset., Time ordering in off diagonal parton distributions. Phys. Lett., B 428 (1998) 359.

B. Pire, J. Soffer, and O. Teryaev, Positivity constraints for offforward parton distributions. Eur. Phys. J. C 8 (1999) 103.

A.V. Radyushkin, Double distributions and evolution equations. Phys. Rev. D 59 (1999) 014030.

M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, The Overlap representation of skewed quark and gluon distributions. Nucl. Phys. B 596 (2001) 33.

P. V. Pobylitsa, Positivity bounds on generalized parton distributions in impact parameter representation. Phys. Rev. D, 66 (2002) 094002.

X. Ji, Off forward parton distributions. J. Phys. G 24 (1998) 1181.

A.V. Radyushkin. Symmetries and structure of skewed and double distributions. Phys. Lett. B 449 (1999) 81.

M. V. Polyakov and C.Weiss. Skewed and double distributions in pion and nucleon. Phys. Rev. D 60 (1999) 114017.

M. V. Polyakov. Hard exclusive electroproduction of two pions and their resonances. Nucl. Phys. B 555 (1999) 231.

C. Mezrag et al., Sketching the pion’s valence-quark generalised parton distribution. Phys. Lett. B 741 (2014190).

S.R. Amendolia et al., A Measurement of the Space - Like Pion Electromagnetic Form-Factor. Nucl. Phys. B 277 (1986) 168.

S. Kumano, Q.-T. Song, and O. Teryaev, Hadron tomography by generalized distribution amplitudes in pion-pair production process and gravitational form factors for pion. Phys. Rev. D 97 (2018) 014020.

J. Collins. The non-triviality of the vacuum in light-front quantization: An elementary treatment. arXiv:1801.03960, 1 (2018).

V. Bertone, H. Dutrieux, C. Mezrag, J. M. Morgado Chávez, and H. Moutarde, Revisiting evolution equations for generalised parton distributions (2022).

C. Mezrag, H. Moutarde, and F. Sabati’e. Test of two new parameterizations of the Generalized Parton Distribution H. Phys. Rev. D 88 (2013) 014001.

C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, and F. Sabatie. Towards a Pion Generalized Parton Distribution Model from Dyson-Schwinger Equations. arXiv:1406.7425, (2014).

C. Mezrag, H. Moutarde, and J. Rodrpíguez-Quintero. From Bethe-SalpeterWave functions to Generalised Parton Distributions. Few Body Syst. 57 (2016) 729.

Z.-F. Cui et al., Kaon and pion parton distributions. Eur. Phys. J. C, 80 (2020) 1064.

J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, and C. D. Roberts, Process-independent effective coupling. From QCD Green’s functions to phenomenology. Few Body Syst., 59 (2018) 121.

V. Bertone, S. Carrazza, and J. Rojo, APFEL: A PDF Evolution Library with QED corrections. Comput. Phys. Commun., 185 (2014) 1647.

V. Bertone, APFEL++: A new PDF evolution library in C++. PoS, DIS2017:201, (2018).

K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting. Eur. Phys. J., A 52 (2016) 157.

H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, On timelike and spacelike deeply virtual Compton scattering at next to leading order. Phys. Rev. D 87 (2013) 054029.

X. Ji and J. Osborne, One loop QCD corrections to deeply virtual Compton scattering: The Parton helicity independent case. Phys. Rev. D 57 (1998) 1337.

A. V. Belitsky, D. Müeller, L. Niedermeier, and A. Schafer, Deeply virtual Compton scattering in next-to-leading order. Phys. Lett. B 474 (2000) 163.

B. Berthou, PARTONS: PARtonic Tomography Of Nucleon Software. A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C 78 (2018) 478.

M. Diehl and D. Yu. Ivanov, Dispersion representations for hard exclusive processes: beyond the Born approximation. Eur. Phys. J. C, 52 (2007) 919.

Downloads

Published

2022-07-29

How to Cite

1.
Morgado Chávez JM, Bertone V, Defurne M, De Soto F, Mezrag C, Moutarde H, Rodríguez Quintero J, Segovia J. Accessing pion GPDs through the Sullivan process: is it feasible?. Supl. Rev. Mex. Fis. [Internet]. 2022 Jul. 29 [cited 2022 Dec. 7];3(3):0308099 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6249