Ghost dynamics from Schwinger-Dyson equations

Authors

  • Mauricio Narciso Ferreira Institute of Physics "Gleb Wataghin", University of Campinas - UNICAMP

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308100

Keywords:

Non perturbative QCD, Schwinger-Dyson equations, ghost propagator, ghost-gluon vertex, three-gluon vertex

Abstract

We discuss the coupled dynamics of the ghost dressing function and the ghost-gluon vertex through the Schwinger-Dyson equations that they satisfy. In order to close the system of equations, we combine recent lattice data for the gluon propagator and an approximate STI-derived Ansatz for the general kinematics three-gluon vertex. The numerical solution of the resulting coupled system exhibits excellent agreement to lattice data, for both the ghost dressing function and the ghost-gluon vertex, and allows the determination of the coupling constant. Next, in the soft gluon limit the full three-gluon vertex appearing in the ghost-gluon equation reduces to a special projection that is tightly constrained by lattice simulations. Specializing the ghost-gluon Schwinger-Dyson equation to this limit provides a nontrivial consistency check on the approximations employed for the three-gluon interaction and shows that the latter has an important quantitative effect on the ghost-gluon vertex. Finally, our results stress the importance of eliminating artifacts when confronting lattice data with continuum predictions.

References

C. D. Roberts and A. G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994) 477.

R. Alkofer and L. von Smekal, The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281.

P. Maris and C. D. Roberts, Dyson-Schwinger equations: A Tool for hadron physics, Int. J. Mod. Phys. E 12 (2003) 297.

J. M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831.

C. S. Fischer, Infrared properties of QCD from DysonSchwinger equations, J. Phys. G 32 (2006) R253.

A. C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, J. High Energy Phys. 12 (2006) 012.

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010.

P. Boucaud, J. Leroy, L. Y. A., J. Micheli, O. Péne, and J. Rodríguez-Quintero, On the IR behaviour of the Landau-gauge ghost propagator, J. High Energy Phys. 06 (2008) 099.

D. Binosi and J. Papavassiliou, Pinch Technique: Theory and Applications, Phys. Rept. 479 (2009) 1.

D. R. Campagnari and H. Reinhardt, Non-Gaussian wave functionals in Coulomb gauge Yang-Mills theory, Phys. Rev. D 82 (2010) 105021.

M. R. Pennington and D. J. Wilson, Are the Dressed Gluon and Ghost Propagators in the Landau Gauge presently determined in the confinement regime of QCD?, Phys. Rev. D 84 (2011) 119901.

N. Vandersickel and D. Zwanziger, The Gribov problem and QCD dynamics, Phys. Rept. 520 (2012) 175.

J. Serreau and M. Tissier, Lifting the Gribov ambiguity in YangMills theories, Phys. Lett. B 712 (2012) 97.

I. C. Cloet and C. D. Roberts, Explanation and Prediction of Observables using Continuum Strong QCD, Prog. Part. Nucl. Phys. 77 (2014) 1.

K.-I. Kondo, S. Kato, A. Shibata, and T. Shinohara, Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory, Phys. Rept. 579 (2015) 1.

D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe-Salpeter equations, Phys. Rev. D 93 (2016) 096010.

A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff, Nonperturbative quark, gluon, and meson correlators of unquenched QCD, Phys. Rev. D 97 (2018) 054006.

L. Corell, A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff, Correlation functions of threedimensional YangMills theory from the FRG, SciPost Phys. 5 (2018) 066.

M. Q. Huber, Nonperturbative properties of Yang- Mills theories, Phys. Rept. 879 (2020) 1.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Nonperturbative Ball-Chiu construction of the threegluon vertex, Phys. Rev. D 99 (2019) 094010.

M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, A window on infrared QCD with small expansion parameters, [arXiv:2106.04526 [hepth]] (2021).

G. Eichmann, J. M. Pawlowski, and J. a. M. Silva, Mass generation in Landau-gauge Yang-Mills theory, Phys. Rev. D 104 (2021) 114016.

J. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436.

P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of Lambda(MS-bar), Phys. Rev. D 79 (2009) 014508.

B. Blossier et al., Ghost-gluon coupling, power corrections and MS from twisted-mass lattice QCD at Nf = 2, Phys. Rev. D 82 (2010) 034510.

A. C. Aguilar, D. Ibañez, and J. Papavassiliou, Ghost propagator and ghost-gluon vertex from Schwinger- Dyson equations, Phys. Rev. D 87 (2013) 114020.

T. Kugo and I. Ojima, Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem, Prog. Theor. Phys. Suppl. 66 (1979) 1.

N. Nakanishi and I. Ojima, Covariant operator formalism of gauge theories and quantum gravity, Vol. 27 (World Scientific Lectures Notes in Physics, Singapore, 1990).

A. Cucchieri, A. Maas, and T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77 (2008) 094510.

R. Alkofer, M. Q. Huber, and K. Schwenzer, Infrared singularities in Landau gauge Yang-Mills theory, Phys. Rev. D 81 (2010) 105010.

M. Q. Huber, A. Maas, and L. von Smekal, Two- and threepoint functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results, J. High Energy Phys. 11 (2012) 035.

A. C. Aguilar, D. Binosi, D. Ibañez, and J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys. Rev. D 89 (2014) 085008.

A. Blum, M. Q. Huber, M. Mitter, and L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89 (2014) 061703.

G. Eichmann, R. Williams, R. Alkofer, and M. Vujinovic, The three-gluon vertex in Landau gauge, Phys. Rev. D 89 (2014) 105014.

A. L. Blum, R. Alkofer, M. Q. Huber, and A. Windisch, Unquenching the three-gluon vertex: A status report, Acta Phys. Polon. Supp. 8 (2015) 321.

A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N. Strodthoff, Landau gauge Yang-Mills correlation functions, Phys. Rev. D 94 (2016) 054005.

A. G. Duarte, O. Oliveira, and P. J. Silva, Further Evidence For Zero Crossing On The Three Gluon Vertex, Phys. Rev. D 94 (2016) 074502.

A. Athenodorou et al., On the zero crossing of the threegluon vertex, Phys. Lett. B 761 (2016) 444.

P. Boucaud, F. De Soto, J. Rodríguez-Quintero, and S. Zafeiropoulos, Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes, Phys. Rev. D 95 (2017) 114503.

A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou, J. Rodríguez-Quintero, and S. Zafeiropoulos, Gluon propagator and three-gluon vertex with dynamical quarks, Eur. Phys. J. C 80 (2020) 154.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Gluon mass scale through nonlinearities and vertex interplay, Phys. Rev. D 100 (2019) 094039.

A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou, and J. Rodríguez-Quintero, Infrared facets of the three-gluon vertex, Phys. Lett. B 818 (2021) 136352.

A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink, Reconstructing the gluon, SciPost Phys. 5 (2018) 065.

J. Horak, J. Papavassiliou, J. M. Pawlowski, and N. Wink, Ghost spectral function from the spectral Dyson-Schwinger equation, Phys. Rev. D 104 (2021) 074017.

M. Q. Huber, Correlation functions of Landau gauge YangMills theory, Phys. Rev. D 101 (2020) 114009.

G. T. R. Catumba, O. Oliveira, and P. J. Silva, Another look at the Landau gauge three-gluon vertex, in A virtual tribute to Quark Confinement and the Hadron Spectrum (2021).

I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69.

P. Boucaud, F. De Soto, K. Raya, J. Rodríguez-Quintero, and S. Zafeiropoulos, Discretization effects on renormalized gaugefield Green’s functions, scale setting, and the gluon mass, Phys. Rev. D 98 (2018) 114515.

A. C. Aguilar et al., Quintero, Ghost dynamics in the soft gluon limit, Phys. Rev. D 104 (2021) 054028.

A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601.

A. Sternbeck and M. M¨uller-Preussker, Lattice evidence for the family of decoupling solutions of Landau gauge Yang-Mills theory, Phys. Lett. B 726 (2013) 396.

P. Boucaud, J. P. Leroy, A. L. Yaouanc, J. Micheli, O. Pene, and J. Rodríguez-Quintero, The Infrared Behaviour of the Pure Yang-Mills Green Functions, Few Body Syst. 53 (2012) 387.

O. Oliveira and P. Bicudo, Running Gluon Mass from Landau Gauge Lattice QCD Propagator, J. Phys. G.G. 38 (2011) 045003.

A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J. Rodríguez-Quintero, Quark flavour effects on gluon and ghost propagators, Phys. Rev. D 86 (2012) 074512.

P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, and P. J. Silva, Lattice gluon propagator in renormalizable gauges, Phys. Rev. D 92 (2015) 114514.

J. M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev. D 26 (1982) 1453.

A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, Gluon dynamics from an ordinary differential equation, Eur. Phys. J. C 81 (2021) 54.

J. S. Ball and T.-W. Chiu, Analytic Properties of the Vertex Function in Gauge Theories. 2., Phys. Rev. D 22 (1980) 2550, [Erratum: Phys. Rev. D 23 (1981) 3085].

M. Q. Huber, On non-primitively divergent vertices of YangMills theory, Eur. Phys. J. C 77 (2017) 733.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Nonperturbative structure of the ghost-gluon kernel, Phys. Rev. D 99 (2019) 034026.

S. Zafeiropoulos, P. Boucaud, F. De Soto, J. Rodríguez- Quintero, and J. Segovia, Strong Running Coupling from the Gauge Sector of Domain Wall Lattice QCD with Physical Quark Masses, Phys. Rev. Lett. 122 (2019) 162002.

E.-M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, A. Schiller, and I. Bogolubsky, Landau gauge gluon and ghost propagators from lattice QCD, Braz.J. Phys. 37 (2007) 193.

W. Schleifenbaum, A. Maas, J. Wambach, and R. Alkofer, Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D 72 (2005) 014017.

M. Q. Huber and L. von Smekal, On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory, J. High Energy Phys. 04 (2013) 149.

B. W. Mintz, L. F. Palhares, S. P. Sorella, and A. D. Pereira, Ghost-gluon vertex in the presence of the Gribov horizon, Phys. Rev. D 97 (2018) 034020.

N. Barrios, M. Peláez, U. Reinosa, and N. Wschebor, The ghost-antighost-gluon vertex from the Curci- Ferrari model: Two-loop corrections, Phys. Rev. D 102 (2020) 114016.

Downloads

Published

2022-06-14

How to Cite

1.
Narciso Ferreira M. Ghost dynamics from Schwinger-Dyson equations. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 14 [cited 2024 Dec. 21];3(3):0308100 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6250