Proton charge radius from a dispersive analysis of the latest space-like e-p scattering data

Authors

  • Yong-Hui Lin HISKP, Bonn University

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308006

Keywords:

Proton charge radius, Dispersion theory, Nucleon form factors, e-p elastic scattering

Abstract

We present a dispersion theoretical analysis on recent date from electron-proton scattering. This allows for a high-precision extraction of the electric and magnetic radius of the proton, $r_E = (0.839\pm 0.002{}^{+0.002}_{-0.003})$~fm and $r_M = (0.846\pm 0.001{}^{+0.001}_{-0.005})$~fm, where the first error refers to the statistical type estimated from the bootstrap method, and the second one refers to the systematic uncertainty related to the underlying spectral functions.

References

R. Pohl et al., The size of the proton, Nature 466 (2010) 213,

C. E. Carlson, The Proton Radius Puzzle, Prog. Part. Nucl. Phys. 82 (2015) 59, https://doi.org/10.1016/j.ppnp.2015.01.002.

H.-W. Hammer and U.-G. Meißner, The proton radius: From a puzzle to precision, Sci. Bull. 65 (2020) 257, https://doi.org/10.1016/j.scib.2019.12.012.

J. P. Karr, D. Marchand and E. Voutier, The proton size, Nature Rev. Phys. 2 (2020) 601, https://doi.org/10.1038/s42254-020-0229-x.

W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, X. Bai and L. Ye, et al. A small proton charge radius from an electron–proton scattering experiment, Nature 575 (2019) 147, https://doi.org/10.1038/s41586-019-1721-2.

Y. H. Lin, H. W. Hammer and U.-G. Meißner, Dispersiontheoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future, Eur. Phys. J. A 57 (2021) 255, https://doi.org/10.1140/epja/s10050-021-00562-0.

Y. H. Lin, H. W. Hammer and U.-G. Meißner, High-precision determination of the electric and magnetic radius of the proton, Phys. Lett. B 816 (2021) 136254, https://doi.org/10.1016/j.physletb.2021.136254.

J. C. Bernauer et al. [A1], Electric and magnetic form factors of the proton, Phys. Rev. C 90 (2014) 015206, https://doi.org/10.1103/PhysRevC.90.015206.

G. F. Chew, R. Karplus, S. Gasiorowicz and F. Zachariasen, Electromagnetic Structure of the Nucleon in Local-Field Theory, Phys. Rev. 110 (1958) 265, https://doi.org/10.1103/PhysRev.110.265.

P. Federbush, M. L. Goldberger and S. B. Treiman, Electromagnetic Structure of the Nucleon, Phys. Rev. 112 (1958) 642, https://doi.org/10.1103/PhysRev.112.642.

M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Roy–Steiner-equation analysis of pion–nucleon scattering, Phys. Rept. 625 (2016) 1. https://doi.org/10.1016/j.physrep.2016.02.002.

M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H. W. Hammer and U.-G. Meißner, On the ππ continuum in the nucleon form factors and the proton radius puzzle, Eur. Phys. J. A 52 (2016 331). https://doi.org/10.1140/epja/i2016-16331-7.

A. A. Filin, V. Baru, E. Epelbaum, H. Krebs, D. Möller and P. Reinert, Extraction of the neutron charge radius from a precision calculation of the deuteron structure radius, Phys. Rev. Lett. 124 (2020) 082501. https://doi.org/10.1103/PhysRevLett.124.082501.

A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, Francois-Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan and M. Diepold, et al. Proton Structure from the Measurement of 2S − 2P Transition Frequencies of Muonic Hydrogen, Science 339 (2013) 417, https://doi.org/10.1126/science.1230016.

https://physics.nist.gov/cgi-bin/cuu/ Value?rp.

Downloads

Published

2022-06-10

How to Cite

1.
Lin Y-H. Proton charge radius from a dispersive analysis of the latest space-like e-p scattering data. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 10 [cited 2022 Dec. 9];3(3):0308006 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6255