Leading isospin breaking effects in nucleon and ∆ masses


  • Simone Romiti Roma Tre University




Isospin breaking; QCD QED; nucleon; ∆


We present a lattice calculation of the leading corrections to the masses of nucleons and ∆ resonances. These are obtained in QCD+QED at 1st order in the Isospin Breaking parameters αEM, the electromagnetic coupling, and ( ˆmd − mˆ u)/ΛQCD, coming from the mass difference between u and d quarks


G.M. De Divitiis et al. Isospin breaking effects due to the updown mass difference in lattice QCD. Journal of High Energy Physics 2012 (2012) 1.

N. Tantalo, Isospin Breaking Effects on the Lattice. (2013). arXiv:1311.2797 [hep-lat] (cit. on p. 2).

G. M. de Divitiis et al. Leading isospin breaking effects on the lattice. Phys. Rev. D 87 (2013) 114505. https://doi.org/10.1103/PhysRevD.87.114505.

N Carrasco et al. Up, down, strange and charm quark masses with Nf= 2+ 1+ 1 twisted mass lattice QCD. Nuclear Physics B 887 (2014) 19.

M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Boulder, CO. 1995).

Particle Data Group et al. Review of Particle Physics. Progress of Theoretical and Experimental Physics 2020.8 (Aug. 2020). 083C01. issn: 2050-3911. https://doi.org/10.1093/ptep/ptaa104.eprint.

S. Sasaki, N* Spectrum in Lattice QCD. 2000. arXiv: hep-ph/0004252[hep-ph].

F. X. Lee and D. B. Leinweber, Negative-parity baryon spectroscopy. Nuclear Physics B - Proceedings Supplements 73 (1999) 258, https://doi.org/10.1016/s0920-5632(99)85041-5.

C. Alexandrou et al. Baryon spectrum with Nf=2+1+1 twisted mass fermions. Physical Review D 90 (2014). https://doi.org/10.1103/physrevd.90.074501.

P.V. Ruuskanen and N.A. T.ornqvist, Unitarity constraints on ¨ resonance mixing and the Okubo-Zweig-Iizuka rule. Il Nuovo Cimento A 1965-1970 (1978) 446.

R. Frezzotti, G. Rossi, and N. Tantalo, Sea quark QED effects and twisted mass fermions. In: arXiv preprint arXiv:1612.02265 (2016) 4.

A. Duncan, E. Eichten, and H. Thacker, Electromagnetic splittings and light quark masses in lattice QCD. Physical review letters 76 (1996) 3894.

D. Giusti et al. Leading isospin-breaking corrections to pion, kaon, and charmed-meson masses with twisted-mass fermions . Physical Review D 95 (2017) 114504.

S. Uno and M. Hayakawa, QED in Finite Volume and Finite Size Scaling Effect on Electromagnetic Properties of Hadrons. Progress of Theoretical Physics 120 (2008) 413. https://doi.org/10.1143/PTP.120.413.

Z. Davoudi and M. J. Savage, Finite-volume electromagnetic corrections to the masses of mesons, baryons, and nuclei. Physical Review D 90 (2014) 054503.

Z. Fodor et al. Quantum electrodynamics in finite volume and nonrelativistic effective field theories. Physics Letters B 755 (2016), 245. https://doi.org/10.1016/j.physletb.2016.01.047.

S.Z. Borsanyi et al., Ab initio calculation of the neutron-proton mass difference. Science 347 (2015) 1452.

R. Baron et al. Light meson physics from maximally twisted mass lattice QCD. Journal of High Energy Physics 2010 (2010) 1.

H. Leutwyler, Chiral perturbation theory. Scholarpedia 7 (2012) 8708, https://doi.org/10.4249/scholarpedia.8708.

C. Alexandrou et al. Low-lying baryon spectrum with two dynamical twisted mass fermions. Physical Review D 80 (2009) 114503.

V. Bernard, Chiral perturbation theory and baryon properties. Progress in Particle and Nuclear Physics 60 (2008) 82.




How to Cite

Romiti S. Leading isospin breaking effects in nucleon and ∆ masses. Supl. Rev. Mex. Fis. [Internet]. 2022 May 25 [cited 2024 May 20];3(3):0308030 1-4. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6256