Proton gravitational form factors and mechanical properties in a light-front quark-diquark model


  • Dipankar Chakrabarti Indian Institute of Technology Kanpur
  • Chandan Mondal Chinese Academy of Sciences
  • Asmita Mukherjee Indian Institute of Technology Bombay
  • Sreeraj Nair The Institute of Modern Physics of the Chinese Academy of Sciences
  • Xingbo Zhao Chinese Academy of Sciences



Light-front, quark-diquark, generalized form factors, mechanical properties


We present our recent calculation of the gravitational form factors (GFFs) of proton using the light-front quark-diquark model constructed by the soft-wall AdS/QCD. We extract the four quark GFFs by calculating the matrix elements of the symmetric energy momentum tensor. Using the D-term we calculate the pressure and shear distributions of quarks inside the proton in the impact parameter space. The GFFs, A(Q2) and B(Q2) are found to be consistent with the lattice QCD, while the qualitative behavior of the D-term form factor is in agreement with the extracted data from the deeply virtual Compton scattering (DVCS) experiments at JLab, the lattice QCD, and the predictions of different phenomenological models.


D. Chakrabarti, C. Mondal, A. Mukherjee, S. Nair and X. Zhao, Gravitational form factors and mechanical properties of proton in a light-front quark-diquark model, Phys. Rev. D 102 (2020) 113011.

V. Burkert, L. Elouadrhiri and F. Girod, The pressure distribution inside the proton, Nature 557 (2018) 396.

X. D. Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys. Rev. Lett. 78 (1997) 610.

M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B 555 (2003) 57.

M. V. Polyakov and P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A 33 (2018) 1830025.

K. Azizi and U. Özdem, Nucleon’s energy momentum tensor form factors in light-cone QCD, Eur. Phys. J. C 80 (2020) 104,

C. Lorcé, H. Moutarde and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C 79 (2019) 89,

T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Lightfront quark model consistent with Drell-Yan-West duality and quark counting rules, Phys. Rev. D 89 (2014) 054033. Erratum: [Phys. Rev. D 92 (2015) 019902].

S. J. Brodsky and G. F. de Téramond, arXiv:1203.4025 [hep-ph].

C. Mondal, Helicity-dependent generalized parton distributions for nonzero skewness, Eur. Phys. J. C 77 (2017) 640.

A. Harindranath, R. Kundu and A. Mukherjee, Phys. Lett. B 728 (2014) 63.

X. Ji, X. Xiong and F. Yuan, Phys. Lett. B 717 (2012) 214.

P. Hagler et al. [LHPC Collaboration]. Nucleon Generalized Parton Distributions from Full Lattice QCD,

G. P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120.

S. J. Brodsky, D. S. Hwang, B. Q. Ma, I. Schmidt, Nucl. Phys. B 593 (2001) 311.

K. Kumerički and D. Müller, Description and interpretation of DVCS measurements, EPJ Web Conf. 112 (2016) 01012.

B. Pasquini, M. V. Polyakov and M. Vanderhaeghen, Dispersive evaluation of the D-term form factor in deeply virtual Compton scattering, Phys. Lett. B 739 (2014) 133.

K. Goeke, J. Grabis, J. Ossmann, M. V. Polyakov, P. Schweitzer, A. Silva and D. Urbano, Nucleon form-factors of the energy momentum tensor in the chiral quark-soliton model, Phys. Rev. D 75 (2007) 094021.

C. Cebulla, K. Goeke, J. Ossmann and P. Schweitzer, The Nucleon form-factors of the energy momentum tensor in the Skyrme model, Nucl. Phys. A 794 (2007) 87.

X. D. Ji, W. Melnitchouk and X. Song, A Study of off forward parton distributions, Phys. Rev. D 56 (1997) 5511.

I. Anikin, Gravitational form factors within light-cone sum rules at leading order, Phys. Rev. D 99 (2019) 094026.

M. V. Lane, Ann. Phys. (Leipzig ) 3-90 (1911 524).




How to Cite

Chakrabarti D, Mondal C, Mukherjee A, Nair S, Zhao X. Proton gravitational form factors and mechanical properties in a light-front quark-diquark model. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 14 [cited 2022 Dec. 9];3(3):0308103 1-5. Available from: