Proton generalized parton distributions from lattice QCD
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308104Keywords:
lattice QCD, nucleon structure, generalized parton distributionsAbstract
Momentum and spatial distributions of quarks and gluons inside hadrons are typically encoded in the so-called generalized parton distributions (GPDs). GPDs are multi-dimensional quantities that are very challenging to extract, both experimentally and within lattice QCD. We present the first lattice results on the x-dependence of isovector unpolarized, helicity and transversity GPDs of the proton, obtained from lattice QCD using an ensemble of Nf = 2 + 1 + 1 maximally twisted mass fermions, with pion mass Mπ = 260 MeV and lattice spacing a ' 0.093 fm. Our calculations use the quasi-distribution formalism and the final distributions are presented in the MS scheme at a renormalization scale of 2 GeV.
References
D. Müller, D. Robaschik, B. Geyer, F. M. Dittes and J. Hořejši, Fortsch. Phys. 42 (1994) 101, https://doi.org/10.1002/prop.2190420202.
X. D. Ji, Phys. Rev. Lett. 78 (1997) 610, https://doi.org/10.1103/PhysRevLett.78.610.
A. V. Radyushkin, Phys. Lett. B 380(1996) 417, https://doi.org/10.1016/0370-2693(96)00528-X.
X. D. Ji, Phys. Rev. D 55 (1997) 7114, https://doi.org/10.1103/PhysRevD.55.7114.
M. Diehl and P. Hagler, Eur. Phys. J. C 44 (2005) 87, https://doi.org/10.1140/epjc/s2005-02342-6.
R. Abdul Khalek et al. [arXiv:2103.05419 [physics.ins-det]].
V. D. Burkert, Ann. Rev. Nucl. Part. Sci. 68 (2018) 405, https://doi.org/10.1146/annurev-nucl-101917-021129.
X. Ji, Phys. Rev. Lett. 110 (2013) 262002, https://doi.org/10.1103/PhysRevLett.110.262002.
X. Ji, Sci. China Phys. Mech. Astron. 57 (2014) 1407, https://doi.org/10.1007/s11433-014-5492-3.
X. Ji, Y. S. Liu, Y. Liu, J. H. Zhang and Y. Zhao, Rev. Mod. Phys. 93 (2021) 035005, https://doi.org/10.1103/RevModPhys.93.035005.
Y. Q. Ma and J. W. Qiu, Phys. Rev. D 98 (2018) 074021, https://doi.org/10.1103/PhysRevD.98.074021.
Y. Q. Ma and J. W. Qiu, Phys. Rev. Lett. 120 (2018) 022003, https://doi.org/10.1103/PhysRevLett.120.022003.
R. S. Sufian et al., Phys. Rev. D 102 (2020) 054508, https://doi.org/10.1103/PhysRevD.102.054508.
A. V. Radyushkin, Phys. Rev. D 96 (2017) 034025, https://doi.org/10.1103/PhysRevD.96.034025.
K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Phys. Rev. D 96 (2017) 094503, https://doi.org/10.1103/PhysRevD.96.094503.
B. Joo´ et al., Phys. Rev. Lett. 125 (2020) 232003, https://doi.org/10.1103/PhysRevLett.125.232003.
A. J. Chambers et al., Phys. Rev. Lett. 118 (2017) 242001, https://doi.org/10.1103/PhysRevLett.118.242001.
K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019 (2019) 3036904, https://doi.org/10.1155/2019/3036904.
M. Constantinou, Eur. Phys. J. A 57 (2021) 77, https://doi.org/10.1140/epja/s10050-021-00353-7.
K. Cichy, [arXiv:2110.07440 [hep-lat]].
C. Alexandrou et al., Phys. Rev. Lett. 125 (2020) 262001, https://doi.org/10.1103/PhysRevLett.125.262001.
C. Alexandrou et al., [arXiv:2108.10789 [hep-lat]].
C. Alexandrou et al., [arXiv:2111.03226 [hep-lat]].
J. Karpie, K. Orginos, A. Rothkopf and S. Zafeiropoulos, JHEP 04 (2019) 057, https://doi.org/10.1007/JHEP04(2019)057.
X. Ji, A. Schäfer, X. Xiong and J. H. Zhang, Phys. Rev. D 92 (2015) 014039, https://doi.org/10.1103/PhysRevD.92.014039.
X. Xiong and J. H. Zhang, Phys. Rev. D 92 (2015) 054037, https://doi.org/10.1103/PhysRevD.92.054037.
Y. S. Liu et al., Phys. Rev. D 100 (2019) 034006, https://doi.org/10.1103/PhysRevD.100.034006.
C. Alexandrou et al., [Extended Twisted Mass], Phys. Rev. D 104 (2021) 074515, https://doi.org/10.1103/PhysRevD.104.074515.
S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76 (2007) 034002, https://doi.org/10.1103/PhysRevD.76.034002.
M. Diehl, Phys. Rept. 388 (2003) 41, https://doi.org/10.1016/j.physrep.2003.08.002.
C. Alexandrou et al., Phys. Rev. D 88 (2013) 014509, https://doi.org/10.1103/PhysRevD.88.014509.
C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou and H. Panagopoulos, PoS LATTICE2013 (2014) 294, https://doi.org/10.22323/1.187.0294.
Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641-653.
V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438-450. IPTI-381-71.
L. N. Lipatov, Yad. Fiz. 20 (1974) 181-198.
G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298, https://doi.org/10.1016/0550-3213(77)90384-4.
A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94 (1980) 245, https://doi.org/10.1016/0370-2693(80)90869-2.
G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22 (1980) 2157, https://doi.org/10.1103/PhysRevD.22.2157.
C. Alexandrou et al., Phys. Rev. D 103 (2021) 094512, https://doi.org/10.1103/PhysRevD.103.094512.
G. S. Bali, B. Lang, B. U. Musch and A. Schäfer, Phys. Rev. D 93 (2016) 094515, https://doi.org/10.1103/PhysRevD.93.094515.
C. Alexandrou et al., Phys. Rev. D 99 (2019) 114504, https://doi.org/10.1103/PhysRevD.99.114504.
S. Bhattacharya, C. Cocuzza and A. Metz, Phys. Lett. B 788 (2019) 453, https://doi.org/10.1016/j.physletb.2018.09.061.
S. Bhattacharya, C. Cocuzza and A. Metz, Phys. Rev. D 102 (2020) 054021, https://doi.org/10.1103/PhysRevD.102.054021.
F. Yuan, Phys. Rev. D 69 (2004) 051501, https://doi.org/10.1103/PhysRevD.69.051501.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aurora Scapellato, Constantia Alexandrou, Krzysztof Cichy, Martha Constantinou, Kyriakos Hadjiyiannakou, Karl Jansen, Fernanda Steffens (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.