Proton generalized parton distributions from lattice QCD

Authors

  • Aurora Scapellato Temple University
  • Constantia Alexandrou University of Cyprus
  • Krzysztof Cichy Adam Mickiewicz University
  • Martha Constantinou Temple University
  • Kyriakos Hadjiyiannakou The Cyprus Institute
  • Karl Jansen NIC, DESY
  • Fernanda Steffens Rheinische Friedrich-Wilhelms-Universität Bonn

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308104

Keywords:

lattice QCD, nucleon structure, generalized parton distributions

Abstract

Momentum and spatial distributions of quarks and gluons inside hadrons are typically encoded in the so-called generalized parton distributions (GPDs). GPDs are multi-dimensional quantities that are very challenging to extract, both experimentally and within lattice QCD. We present the first lattice results on the x-dependence of isovector unpolarized, helicity and transversity GPDs of the proton, obtained from lattice QCD using an ensemble of Nf = 2 + 1 + 1 maximally twisted mass fermions, with pion mass Mπ = 260 MeV and lattice spacing a ' 0.093 fm. Our calculations use the quasi-distribution formalism and the final distributions are presented in the MS scheme at a renormalization scale of 2 GeV.

References

D. Müller, D. Robaschik, B. Geyer, F. M. Dittes and J. Hořejši, Fortsch. Phys. 42 (1994) 101, https://doi.org/10.1002/prop.2190420202.

X. D. Ji, Phys. Rev. Lett. 78 (1997) 610, https://doi.org/10.1103/PhysRevLett.78.610.

A. V. Radyushkin, Phys. Lett. B 380(1996) 417, https://doi.org/10.1016/0370-2693(96)00528-X.

X. D. Ji, Phys. Rev. D 55 (1997) 7114, https://doi.org/10.1103/PhysRevD.55.7114.

M. Diehl and P. Hagler, Eur. Phys. J. C 44 (2005) 87, https://doi.org/10.1140/epjc/s2005-02342-6.

R. Abdul Khalek et al. [arXiv:2103.05419 [physics.ins-det]].

V. D. Burkert, Ann. Rev. Nucl. Part. Sci. 68 (2018) 405, https://doi.org/10.1146/annurev-nucl-101917-021129.

X. Ji, Phys. Rev. Lett. 110 (2013) 262002, https://doi.org/10.1103/PhysRevLett.110.262002.

X. Ji, Sci. China Phys. Mech. Astron. 57 (2014) 1407, https://doi.org/10.1007/s11433-014-5492-3.

X. Ji, Y. S. Liu, Y. Liu, J. H. Zhang and Y. Zhao, Rev. Mod. Phys. 93 (2021) 035005, https://doi.org/10.1103/RevModPhys.93.035005.

Y. Q. Ma and J. W. Qiu, Phys. Rev. D 98 (2018) 074021, https://doi.org/10.1103/PhysRevD.98.074021.

Y. Q. Ma and J. W. Qiu, Phys. Rev. Lett. 120 (2018) 022003, https://doi.org/10.1103/PhysRevLett.120.022003.

R. S. Sufian et al., Phys. Rev. D 102 (2020) 054508, https://doi.org/10.1103/PhysRevD.102.054508.

A. V. Radyushkin, Phys. Rev. D 96 (2017) 034025, https://doi.org/10.1103/PhysRevD.96.034025.

K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Phys. Rev. D 96 (2017) 094503, https://doi.org/10.1103/PhysRevD.96.094503.

B. Joo´ et al., Phys. Rev. Lett. 125 (2020) 232003, https://doi.org/10.1103/PhysRevLett.125.232003.

A. J. Chambers et al., Phys. Rev. Lett. 118 (2017) 242001, https://doi.org/10.1103/PhysRevLett.118.242001.

K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019 (2019) 3036904, https://doi.org/10.1155/2019/3036904.

M. Constantinou, Eur. Phys. J. A 57 (2021) 77, https://doi.org/10.1140/epja/s10050-021-00353-7.

K. Cichy, [arXiv:2110.07440 [hep-lat]].

C. Alexandrou et al., Phys. Rev. Lett. 125 (2020) 262001, https://doi.org/10.1103/PhysRevLett.125.262001.

C. Alexandrou et al., [arXiv:2108.10789 [hep-lat]].

C. Alexandrou et al., [arXiv:2111.03226 [hep-lat]].

J. Karpie, K. Orginos, A. Rothkopf and S. Zafeiropoulos, JHEP 04 (2019) 057, https://doi.org/10.1007/JHEP04(2019)057.

X. Ji, A. Schäfer, X. Xiong and J. H. Zhang, Phys. Rev. D 92 (2015) 014039, https://doi.org/10.1103/PhysRevD.92.014039.

X. Xiong and J. H. Zhang, Phys. Rev. D 92 (2015) 054037, https://doi.org/10.1103/PhysRevD.92.054037.

Y. S. Liu et al., Phys. Rev. D 100 (2019) 034006, https://doi.org/10.1103/PhysRevD.100.034006.

C. Alexandrou et al., [Extended Twisted Mass], Phys. Rev. D 104 (2021) 074515, https://doi.org/10.1103/PhysRevD.104.074515.

S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76 (2007) 034002, https://doi.org/10.1103/PhysRevD.76.034002.

M. Diehl, Phys. Rept. 388 (2003) 41, https://doi.org/10.1016/j.physrep.2003.08.002.

C. Alexandrou et al., Phys. Rev. D 88 (2013) 014509, https://doi.org/10.1103/PhysRevD.88.014509.

C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou and H. Panagopoulos, PoS LATTICE2013 (2014) 294, https://doi.org/10.22323/1.187.0294.

Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641-653.

V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438-450. IPTI-381-71.

L. N. Lipatov, Yad. Fiz. 20 (1974) 181-198.

G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298, https://doi.org/10.1016/0550-3213(77)90384-4.

A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94 (1980) 245, https://doi.org/10.1016/0370-2693(80)90869-2.

G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22 (1980) 2157, https://doi.org/10.1103/PhysRevD.22.2157.

C. Alexandrou et al., Phys. Rev. D 103 (2021) 094512, https://doi.org/10.1103/PhysRevD.103.094512.

G. S. Bali, B. Lang, B. U. Musch and A. Schäfer, Phys. Rev. D 93 (2016) 094515, https://doi.org/10.1103/PhysRevD.93.094515.

C. Alexandrou et al., Phys. Rev. D 99 (2019) 114504, https://doi.org/10.1103/PhysRevD.99.114504.

S. Bhattacharya, C. Cocuzza and A. Metz, Phys. Lett. B 788 (2019) 453, https://doi.org/10.1016/j.physletb.2018.09.061.

S. Bhattacharya, C. Cocuzza and A. Metz, Phys. Rev. D 102 (2020) 054021, https://doi.org/10.1103/PhysRevD.102.054021.

F. Yuan, Phys. Rev. D 69 (2004) 051501, https://doi.org/10.1103/PhysRevD.69.051501.

Downloads

Published

2022-06-20

How to Cite

1.
Scapellato A, Alexandrou C, Cichy K, Constantinou M, Hadjiyiannakou K, Jansen K, Steffens F. Proton generalized parton distributions from lattice QCD. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 20 [cited 2022 Dec. 7];3(3):0308104 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6269