Holographic model in anisotropic hot dense QGP with external Magnetic Field

Authors

  • Kristina Rannu Peoples' Friendship University of Russia
  • I. Ya. Aref’eva Russian Academy of Sciences
  • P. S. Slepov Russian Academy of Sciences

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308126

Keywords:

AdS/QCD, holography, phase transition, heavy quarks, magnetic field

Abstract

We study the confinement/deconfinement phase diagram within a five-dimensional fully anisotropic holographic model supported by Einsteindilaton-three-Maxwell action. One of the Maxwell fields provides the chemical potential, the second Maxwell field represents real spacial anisotropy of the QGP produced in heavy-ion collisions and the third Maxwell field is related to an external magnetic field. Influence of the so-called primary anisotropy due to the non-centrality of the heavy-ion collision and secondary anisotropy originating from the external magnetic field on the phase diagram is considered. Based on recent work [1,2].

References

I.Ya. Aref’eva, K. Rannu, P. Slepov, Holographic Anisotropic Model for Heavy Quarks in Anisotropic Hot Dense QGP with External Magnetic Field, JHEP 07 (2021) 161 https://doi.org/10.1007/JHEP07(2021)161. [arXiv:2011.07023 [hep-th]]

I.Ya. Aref’eva, K. Rannu, P. Slepov, Spatial Wilson loops in a fully anisotropic model, Theor. Math. Phys. 206 (2021) 349-356 https://doi.org/10.1134/S0040577921030077. [arXiv:2012.05758 [hep-th]]

J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, (Cambridge University Press, 2014) [arXiv:1101.0618 [hep-th]]

I.Ya. Aref’eva, Holographic approach to quark-gluon plasma in heavy ion collisions’, Phys. Usp. 57 (2014) 527

O. DeWolfe, S.S. Gubser, C. Rosen, D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794 [hep-th]]

F.R. Brown, F.P. Butler, H. Chen, N.H. Christ, Z. Dong, W. Schaffer, L.I. Unger, A. Vaccarino, On the existence of a phase transition for QCD with three light quarks, Phys. Rev. Lett. 65 (1990) 2491-2494 https://doi.org/10.1103/PhysRevLett.65.2491.

O. Philipsen, C. Pinke, The Nf = 2 QCD chiral phase transition with Wilson fermions a zero and imaginary chemical potential, Phys. Rev. D 93 (2016) 114507 https://doi.org/10.1103/PhysRevD.93.114507. [arXiv:1602.06129 [hep-lat]]

J. Adam et al. [ALICE Collaboration], Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at √ sNN = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 222302 https://doi.org/10.1103/PhysRevLett.116.222302. [arXiv:1512.06104 [nucl-ex]]

I.Ya. Aref’eva, A.A. Golubtsova, Shock waves in Lifshitz-like spacetimes, JHEP 04 (2015) 011 https://doi.org/10.1007/JHEP04(2015)011. [arXiv:1410.4595 [hep-th]]

I.Ya. Aref’eva, K.A. Rannu, Holographic Anisotropic Background with Confinement-Deconfinement Phase Transition, JHEP 05 (2018) 206 https://doi.org/10.1007/JHEP05(2018)206. [arXiv:1802.05652 [hep-th]]

I. Aref’eva, K. Rannu, P. Slepov, Orientation Dependence of Confinement-Deconfinement Phase Transition in Anisotropic Media’, Phys. Lett. B 792 (2019) 470-475 https://doi.org/10.1016/j.physletb.2019.04.012. [arXiv:1808.05596 [hep-th]]

I. Aref’eva, K. Rannu, P. Slepov, Cornell potential for anisotropic QGP with non-zero chemical potential, EPJ Web Conf. 222 (2019) 03023 https://doi.org/10.1051/epjconf/201922203023.

I. Aref’eva, Holography for Nonperturbative Study of QFT, Phys. Part. Nucl. 51 (2020) 489-496 https://doi.org/10.1134/S1063779620040097.

K.A. Rannu, Holographic Model for Light Quarks in Anisotropic Background, Phys. Part. Nucl. 52 (2021) 555-559 https://doi.org/10.1134/S1063779621040511.

P. Slepov, A way to improve string tension dependence on temperature in holographic model, Phys. Part. Nucl. 52 (2021) 560-563 https://doi.org/10.1134/S1063779621040572.

I.Ya. Aref’eva, K. Rannu, P. Slepov, Holographic Anisotropic Model for Light Quarks with Confinement-Deconfinement Phase Transition, JHEP 06 (2021) 090 https://doi.org/10.1007/JHEP06(2021)090. [arXiv:2009.05562 [hepth]]

O. Andreev, V.I. Zakharov, On Heavy-Quark Free Energies, Entropies, Polyakov Loop, and AdS/QCD, JHEP 04 (2007) 100 https://doi.org/10.1088/1126-6708/2007/04/100. [arXiv:hep-ph/0611304 [hep-ph]]

U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Holography and Thermodynamics of 5D Dilaton-gravity, JHEP 05 (2009) 033 https://doi.org/10.1088/1126-6708/2009/05/033. [arXiv:0812.0792 [hep-th]]

U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Improved Holographic Yang-Mills at Finite Temperature: Comparison with Data’, Nucl. Phys. B 820 (2009) 148-177 https://doi.org/10.1016/j.nuclphysb.2009.05.017. [arXiv:0903.2859 [hep-th]]

S. He, M. Huang, Q.-S. Yan, Logarithmic correction in the deformed AdS5 model to produce the heavy quark potential and QCD beta function, Phys. Rev. D 83 (2011) 045034 https://doi.org/10.1103/PhysRevD.83.045034. [arXiv:1004.1880 [hep-ph]]

M. Mia, K. Dasgupta, C. Gale, S. Jeon, Heavy Quarkonium Melting in Large N Thermal QCD, Phys. Lett. B 694 (2011) 460-466 https://doi.org/10.1016/j.physletb.2010.10.023. [arXiv:1006.0055 [hep-th]]

U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. Nitti, Improved Holographic QCD, Lect. Notes Phys. 828 (2011) 79-146 https://doi.org/10.1007/978-3-642-04864-7 4. [arXiv:1006.5461 [hep-th]]

P. Colangelo, F. Giannuzzi, S. Nicotri, V. Tangorra, Temperature and quark density effects on the chiral condensate: An AdS/QCD study, EPJ C 72 (2012) 2096 https://doi.org/10.1140/epjc/s10052-012-2096-9. [arXiv:1112.4402 [hep-ph]]

R.-G. Cai, S. He, D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP 03 (2012) 033 https://doi.org/10.1007/JHEP03(2012)033. [arXiv:1201.0820 [hep-th]]

D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 https://doi.org/10.1007/JHEP07(2012)031. [arXiv:1202.4436 [hep-th]]

D. Li, M. Huang, Q.-S. Yan, A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement, EPJ C 73 (2013) 2615 https://doi.org/10.1140/epjc/s10052-013-2615-3. [arXiv:1206.2824 [hep-th]]

S. He, S.-Y. Wu, Y. Yangm P.-H. Yuan, Phase Structure in a Dynamical Soft-Wall Holographic QCD Model, JHEP 04 (2013) 093 https://doi.org/10.1007/JHEP04(2013)093. [arXiv:1301.0385 [hep-th]]

D. Li, M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP 11 (2013) 088 https://doi.org/10.1007/JHEP11(2013)088. [arXiv:1303.6929 [hep-ph]]

Y. Yang, P.-H. Yuan, A Refined Holographic QCD Model and QCD Phase Structure, JHEP 11 (2014) 149 https://doi.org/10.1007/JHEP11(2014)149. [arXiv:1406.1865 [hep-th]]

D. Li, S. He, M. Huang, Temperature dependent transport coefficients in a dynamical holographic QCD model, JHEP 06 (2015) 046 https://doi.org/10.1007/JHEP06(2015)046. [arXiv:1411.5332 [hep-ph]]

R. Rougemont, R. Critelli, J. Noronha, Holographic calculation of the QCD crossover temperature in a magnetic field, Phys. Rev. D 93 (2015) 045013 https://doi.org/10.1103/PhysRevD.93.045013. [arXiv:1505.07894 [hepph]]

Y. Yang, P.-H. Yuan, Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model, JHEP 12 (2015) 161 https://doi.org/10.1007/JHEP12(2015)161. [arXiv:1506.05930 [hep-th]]

K. Chelabi, Z. Fang, M. Huang, D. Li, Y.-L. Wu, Realization of chiral symmetry breaking and restoration in holographic QCD, Phys. Rev. D 93 (2016) 101901 https://doi.org/10.1103/PhysRevD.93.101901. [arXiv:1511.02721 [hepph]]

Z. Fang, S. He. D. Li, Chiral and Deconfining Phase Transitions from Holographic QCD Study, Nucl. Phys. B 907 (2016) 187-207 https://doi.org/10.1016/j.nuclphysb.2016.04.003. [arXiv:1512.04062 [hep-ph]]

K. Chelabi, Z. Fang, M. Huang, D. Li, Y.-L. Wu, Chiral Phase Transition in the Soft-Wall Model of AdS/QCD, JHEP 04 (2016) 036 https://doi.org/10.1007/JHEP04(2016)036. [arXiv:1512.06493 [hep-ph]]

D. Li, M. Huang, Y. Yang, P.-H. Yuan, Inverse Magnetic Catalysis in the Soft-Wall Model of AdS/QCD, JHEP 02 (2017) 030 https://doi.org/10.1007/JHEP02(2017)030. [arXiv:1610.04618 [hep-th]]

D. Li, M. Huang, Chiral phase transition of QCD with Nf = 2 + 1 flavors from holography, JHEP 02 (2017) 042 https://doi.org/10.1007/JHEP02(2017)042. [arXiv:1610.09814 [hep-ph]]

D. Dudal, S. Mahapatra, Confining gauge theories and holographic entanglement entropy with a magnetic field, JHEP 04 (2017) 031 https://doi.org/10.1007/JHEP04(2017)031. [arXiv:1612.06248 [hep-th]]

M.-W. Li, Y. Yang, P.-H. Yuan, Approaching Confinement Structure for Light Quarks in a Holographic Soft Wall QCD Model, Phys. Rev. D 96 (2017) 066013 https://doi.org/10.1103/PhysRevD.96.066013. [arXiv:1703.09184 [hep-th]]

Y. Yang, P.-H. Yuan, Universal Behaviors of Speed of Sound from Holography, Phys. Rev. D 97 (2018) 126009 https://doi.org/10.1103/PhysRevD.97.126009. [arXiv:1705.07587 [hep-th]]

I.Ya. Aref’eva, A.A. Golubtsova, G. Policastro, Exact holographic RG flows and the A1 × A1 Toda chain, JHEP 05 (2019) 117 https://doi.org/10.1007/JHEP05(2019)117. [arXiv:1803.06764 [hep-th]]

Z. Fang, Y.-L. Wu, L. Zhang, Chiral phase transition and QCD phase diagram from AdS/QCD, Phys. Rev. D 99 (2019) 034028 https://doi.org/10.1103/PhysRevD.99.034028. [arXiv:1810.12525 [hep-ph]]

J. Chen, S. He, M. Huang, D. Li, Critical exponents of finite temperature chiral phase transition in soft-wall AdS/QCD models, JHEP 12 (2015) 161 [arXiv:1810.07019 [hep-ph]]

A.A. Golubtsova, V.H. Nguyen, Wilson Loops in Exact Holographic RG Flows at Zero and Finite Temperatures, Theor. Math. Phys. 202 (2020) 214-230 https://doi.org/10.1134/S0040577920020051. [arXiv:1906.12316 [hep-th]]

H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model, Phys. Lett. B 801 (2020) 135184 https://doi.org/10.1016/j.physletb.2019.135184. [arXiv:1907.01852 [hep-th]]

X. Chen, D. Li, D. Ho, M. Huang, Quarkyonic phase from quenched dynamical holographic QCD model, JHEP 03 (2020) 073 https://doi.org/10.1007/JHEP03(2020)073. [arXiv:1908.02000 [hep-ph]]

Z. Fang, Y.-L. Wu, Equation of state and chiral transition in soft-wall AdS/QCD with more realistic gravitational background, [arXiv:1909.06917 [hep-ph]]

Z. Fang, L. Zhang, Chiral transition and meson melting with finite chemical potential in an improved soft-wall AdS/QCD Model, [arXiv:1910.02269 [hep-ph]]

A. Ballon-Bayona, L.A.H. Mamani, Nonlinear realization of chiral symmetry breaking in holographic soft wall models, Phys. Rev. D 102 (2020) 026013 https://doi.org/10.1103/PhysRevD.102.026013. [arXiv:2002.00075 [hepph]]

S. He, Y. Yang, P.-H. Yuan, Analytic Study of Magnetic Catalysis in Holographic QCD, [arXiv:2004.01965 [hep-th]]

D. Dudal, A. Hajilou, S. Mahapatra, A quenched 2-flavour Einstein-Maxwell-dilaton gauge-gravity model, EPJ A 57 (2021) 142 [arXiv:2103.01185 [hep-th]]

A. Ballon-Bayona, J.P. Shock, D. Zoakos, Magnetic catalysis and the chiral condensate in holographic QCD, JHEP 10 (2020) 193 [arXiv:2005.00500 [hep-th]]

A. Ballon-Bayona, H. Boschi-Filho, E. Folco Capossoli, D.M. Rodrigues, Criticality from EMD holography at finite temperature and density, Phys. Rev. D 102 (2020) 126003 [arXiv:2006.08810 [hep-th]]

P. Colangelo, F. De Fazio, N. Losacco, Chaos in a QQ¯ system at finite temperature and baryon density, Phys. Rev. D 102 (2020) 074016 https://doi.org/10. 1103/PhysRevD.102.074016. [arXiv:2007.06980 [hepph]]

M.-W. Li, Y. Yang, P.-H. Yuan, Analytic Study on Chiral Phase Transition in Holographic QCD, JHEP 02 (2021) 055 https://doi.org/10.1007/JHEP02(2021)055. [arXiv:2009.05694 [hep-th]]

H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Chiral transition in the probe approximation from an Einstein-Maxwelldilaton gravity model, Phys. Rev. D 103 (2021) 086021 [arXiv:2010.04578 [hep-th]]

D. M. Rodrigues, D. Li, E. Folco Capossoli, H. Boschi-Filho, Finite density effects on chiral symmetry breaking in a magnetic field in 2+1 dimensions from holography, Phys. Rev. D 103 (2021) 066022 [arXiv:2010.06762 [hep-th]]

N. Jokela, J.G. Subils, Is entanglement a probe of confinement?, JHEP 02 (2021) 147 [arXiv:2010.09392 [hep-th]]

N. Cardoso, P. Bicudo, Lattice QCD computation of the SU(3) String Tension critical curve, Phys. Rev. D 85 (2012) 077501 https://doi.org/10.1103/PhysRevD.85.077501. [arXiv:1111.1317 [hep-lat]]

S.J. Sin, I. Zahed, Ampere’s Law and Energy Loss in AdS/CFT Duality, Phys. Lett. B 648 (2007) 318 https://doi.org/10.1016/j.physletb.2007.01.074. [arXiv:0606049 [hep-th]]

O. Andreev, Drag Force on Heavy Quarks and Spatial String Tension, Mod. Phys. Lett. A 33 (2018) 1850041 https://doi.org/10.1142/S0217732318500414. [arXiv: 1707.05045[hep-ph]]

Downloads

Published

2022-06-17

How to Cite

1.
Rannu K, Aref’eva IY, Slepov PS. Holographic model in anisotropic hot dense QGP with external Magnetic Field. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 17 [cited 2022 Dec. 9];3(3):0308126 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6282