Studying the quark gap equation at finite temperature, magnetic field and different numbers of flavor and color numbers

Authors

  • Marco Antonio Bedolla Universidad Autónoma de Chiapas
  • Adnan Bashir Universidad Michoacana de San Nicolás de Hidalgo
  • Aftab Ahmad Gomal University
  • Jesús Javier Cobos Martínez Universidad de Sonora

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308128

Keywords:

Contact interaction, Flavor and color number, magnetic catalysis, inverse magnetic catalysis

Abstract

In recent years, a momentum-independent symmetry preserving vector-vector contact interaction has been used to provide exploratory studies in QCD. It helps calculate different static and dynamic observables of all mesons and baryons. In this work, we revisit how the quark gap equation is affected by changing the number of quark colors and/or flavors, or by placing quarks in a thermal bath in the presence of an external magnetic field. In particular, we describe how the phenomenon of magnetic catalysis and its inverse can be studied.

References

D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343, https://doi.org/10.1103/PhysRevLett.30.1343.

H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346, https://doi.org/10.1103/PhysRevLett.30.1346.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys. Rev. D 8 (1973) 3633, https://doi.org/10.1103/PhysRevD.8.3633.

C. Bernard et al. [MILC], QCD thermodynamics with three flavors of improved staggered quarks, Phys. Rev. D 71 (2005) https://doi.org/10.1103/PhysRevD.71.034504.

M. Cheng, N. H. Christ, S. Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney and C. Miao, et al. The Transition temperature in QCD, Phys. Rev. D 74 (2006) 054507, https://doi.org/10.1103/PhysRevD.74.054507.

Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg and K. K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit II., JHEP 06 (2009) 088, https://doi.org/10.1088/1126-6708/2009/06/088.

S. Borsanyi et al. [Wuppertal-Budapest], Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073, https://doi.org/10.1007/JHEP09(2010)073.

A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503, https://doi.org/10.1103/PhysRevD.85.054503.

L. Levkova, QCD at nonzero temperature and density, PoS LATTICE2011 (2011) 011, https://doi.org/10.22323/1.139.0011.

P. de Forcrand, J. Langelage, O. Philipsen and W. Unger, Lattice QCD Phase Diagram In and Away from the Strong Coupling Limit, Phys. Rev. Lett. 113 (2014) 152002, https://doi.org/10.1103/PhysRevLett.113.152002.

T. Bhattacharya, M. I. Buchoff, N. H. Christ, H. T. Ding, R. Gupta, C. Jung, F. Karsch, Z. Lin, R. D. Mawhinney and G. McGlynn, et al. QCD Phase Transition with Chiral Quarks and Physical Quark Masses, Phys. Rev. Lett. 113 (2014) 082001, https://doi.org/10.1103/PhysRevLett.113.082001.

A. Bazavov, H. T. Ding, P. Hegde, F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky and C. Schmidt, Chiral phase structure of three flavor QCD at vanishing baryon number density, Phys. Rev. D 95 (2017) 074505, https://doi.org/10.1103/PhysRevD.95.074505.

S. x. Qin, L. Chang, H. Chen, Y. x. Liu and C. D. Roberts, Phase diagram and critical endpoint for strongly-interacting quarks, Phys. Rev. Lett. 106 (2011) 172301, https://doi.org/10.1103/PhysRevLett.106.172301.

C. S. Fischer, J. Luecker and J. A. Mueller, Chiral and deconfinement phase transitions of two-flavour QCD at finite temperature and chemical potential, Phys. Lett. B 702 (2011) 438, https://doi.org/10.1016/j.physletb.2011.07.039.

A. Ayala, A. Bashir, C. A. Dominguez, E. Gutierrez, M. Loewe and A. Raya, QCD phase diagram from finite energy sum rules, Phys. Rev. D 84 (2011) 056004, https://doi.org/10.1103/PhysRevD.84.056004.

E. Gutierrez, A. Ahmad, A. Ayala, A. Bashir and A. Raya, The QCD phase diagram from Schwinger–Dyson equations, J. Phys. G 41 (2014) 075002, https://doi.org/10.1088/0954-3899/41/7/075002.

F. Gao, J. Chen, Y. X. Liu, S. X. Qin, C. D. Roberts and S. M. Schmidt, Phase diagram and thermal properties of strong-interaction matter, Phys. Rev. D 93 (2016) 094019, https://doi.org/10.1103/PhysRevD.93.094019.

G. Eichmann, C. S. Fischer and C. A. Welzbacher, Baryon effects on the location of QCD’s critical end point, Phys. Rev. D 93 (2016) 034013, https://doi.org/10.1103/PhysRevD.93.034013.

F. Gao and Y. x. Liu, QCD phase transitions via a refined truncation of Dyson-Schwinger equations, Phys. Rev. D 94 (2016) 076009, https://doi.org/10.1103/PhysRevD.94.076009.

C. S. Fischer, QCD at finite temperature and chemical potential from Dyson–Schwinger equations, Prog. Part. Nucl. Phys. 105 (2019) 1, https://doi.org/10.1016/j.ppnp.2019.01.002.

C. Shi, X. T. He, W. B. Jia, Q. W. Wang, S. S. Xu and H. S. Zong, Chiral transition and the chiral charge density of the hot and dense QCD matter, JHEP 06 (2020) 122, https://doi.org/10.1007/JHEP06(2020)122.

V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions, Phys. Lett. B 349 (1995) 477, https://doi.org/10.1016/0370-2693(95)00232-A.

D. S. Lee, C. N. Leung and Y. J. Ng, Chiral symmetry breaking in a uniform external magnetic field, Phys. Rev. D 55 (1997) 6504, https://doi.org/10.1103/PhysRevD.55.6504.

D. K. Hong, Magnetic catalysis in quantum electrodynamics, Phys. Rev. D 57 (1998) 3759, https://doi.org/10.1103/PhysRevD.57.3759.

E. J. Ferrer and V. de la Incera, Magnetic catalysis in the presence of scalar fields, Phys. Lett. B 481 (2000) 287, https://doi.org/10.1016/S0370-2693(00)00482-2.

A. Ayala, A. Bashir, A. Raya and E. Rojas, Dynamical mass generation in strongly coupled quantum electrodynamics with weak magnetic fields, Phys. Rev. D 73 (2006) 105009, https://doi.org/10.1103/PhysRevD.73.105009.

E. Rojas, A. Ayala, A. Bashir and A. Raya, Dynamical mass generation in QED with magnetic fields: Arbitrary field strength and coupling constant, Phys. Rev. D 77 (2008) 093004, https://doi.org/10.1103/PhysRevD.77.093004.

A. Ayala, A. Bashir, E. Gutierrez, A. Raya and A. Sanchez, Chiral and Parity Symmetry Breaking for Planar Fermions: Effects of a Heat Bath and Uniform External Magnetic Field, Phys. Rev. D 82 (2010) 056011, https://doi.org/10.1103/PhysRevD.82.056011.

G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer and K. K. Szabo, The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044, https://doi.org/10.1007/JHEP02(2012)044.

G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz and A. Schafer, QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502, https://doi.org/10.1103/PhysRevD.86.071502.

G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaefer, Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD, JHEP 04 (2013) 130, https://doi.org/10.1007/JHEP04(2013)130.

V. G. Bornyakov, P. V. Buividovich, N. Cundy, O. A. Kochetkov and A. Schafer, Deconfinement transition in two-flavor lattice QCD with dynamical overlap fermions in an external magnetic field, Phys. Rev. D 90 (2014) 034501, https://doi.org/10.1103/PhysRevD.90.034501.

V. P. Pagura, D. Gomez Dumm, S. Noguera and N. N. Scoccola, Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models, Phys. Rev. D 95 (2017) 034013, https://doi.org/10.1103/PhysRevD.95.034013.

A. Ahmad, A. Bashir, M. A. Bedolla and J. J. Cobos-Martınez, Flavor, temperature and magnetic field dependence of the QCD phase diagram: magnetic catalysis and its inverse, J. Phys. G 48 (2021) 075002, https://doi.org/10.1088/1361-6471/abd88f.

H. L. L. Roberts, L. Chang, I. C. Cloet and C. D. Roberts, Masses of ground and excited-state hadrons, Few Body Syst. 51 (2011) 1, https://doi.org/10.1007/s00601-011-0225-x.

M. A. Bedolla, J. J. Cobos-Martınez and A. Bashir, Charmonia in a contact interaction, Phys. Rev. D 92 (2015) 054031, https://doi.org/10.1103/PhysRevD.92.054031.

M. A. Bedolla, K. Raya, J. J. Cobos-Martınez and A. Bashir, ηc elastic and transition form factors: Contact interaction and algebraic model, Phys. Rev. D 93 (2016) 094025, https://doi.org/10.1103/PhysRevD.93.094025.

K. Raya, M. A. Bedolla, J. J. Cobos-Martınez and A. Bashir, Heavy quarkonia in a contact interaction and an algebraic model: mass spectrum, decay constants, charge radii and elastic and transition form factors, Few Body Syst. 59 (2018) 133, https://doi.org/10.1007/s00601-018-1455-y.

L. X. Gutierrez-Guerrero, A. Bashir, M. A. Bedolla and E. Santopinto, Masses of Light and Heavy Mesons and Baryons: A Unified Picture, Phys. Rev. D 100 (2019) 114032, https://doi.org/10.1103/PhysRevD.100.114032.

P. Boucaud, J. P. Leroy, A. L. Yaouanc, J. Micheli, O. Pene and J. Rodriguez-Quintero, The Infrared Behaviour of the Pure Yang-Mills Green Functions, Few Body Syst. 53 (2012) 387, https://doi.org/10.1007/s00601-011-0301-2.

D. Binosi, C. Mezrag, J. Papavassiliou, C. D. Roberts and J. Rodriguez-Quintero, Process-independent strong running coupling, Phys. Rev. D 96 (2017) 054026, https://doi.org/10.1103/PhysRevD.96.054026.

A. Deur, S. J. Brodsky and G. F. de Teramond, The QCD Running Coupling, Nucl. Phys. 90 (2016) 1, https://doi.org/10.1016/j.ppnp.2016.04.003.

D. Ebert, T. Feldmann and H. Reinhardt, Extended NJL model for light and heavy mesons without q - anti-q thresholds, Phys. Lett. B 388 (1996) 154, https://doi.org/10.1016/0370-2693(96)01158-6.

C. D. Roberts, Hadron Properties and Dyson-Schwinger Equations, Prog. Part. Nucl. Phys. 61 (2008) 50, https://doi.org/10.1016/j.ppnp.2007.12.034.

R. L. S. Farias, G. Dallabona, G. Krein and O. A. Battistel, Extension of the Nambu-Jona-Lasinio model at high densities and temperatures using an implicit regularization scheme, Phys. Rev. C 77 (2008) 065201, https://doi.org/10.1103/PhysRevC.77.065201.

A. Bashir, A. Raya and J. Rodriguez-Quintero, QCD: Restoration of Chiral Symmetry and Deconfinement for Large Nf , Phys. Rev. D 88 (2013) 054003, https://doi.org/10.1103/PhysRevD.88.054003.

G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer and K. K. Szabo, The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044, https://doi.org/10.1007/JHEP02(2012)044.

M. Ferreira, P. Costa, O. Lourenco, T. Frederico and C. Providencia, Inverse magnetic catalysis in the (2+1)-flavor Nambu-Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio models, Phys. Rev. D 89 (2014) 116011, https://doi.org/10.1103/PhysRevD.89.116011.

R. L. S. Farias, K. P. Gomes, G. I. Krein and M. B. Pinto, Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter, Phys. Rev. C 90 (2014) 025203, https://doi.org/10.1103/PhysRevC.90. 025203.

R. L. S. Farias, V. S. Timoteo, S. S. Avancini, M. B. Pinto and G. Krein, Thermo-magnetic effects in quark matter: Nambu– Jona-Lasinio model constrained by lattice QCD, Eur. Phys. J. A 53 (2017) 101, https://doi.org/10.1140/epja/i2017-12320-8.

T. Appelquist, J. Terning and L. C. R. Wijewardhana, The Zero temperature chiral phase transition in SU(N) gauge theories, Phys. Rev. Lett. 77 (1996) 1214, https://doi.org/10.1103/PhysRevLett.77.1214.

T. Appelquist, A. G. Cohen and M. Schmaltz, A New constraint on strongly coupled gauge theories, Phys. Rev. D 60 (1999) 045003, https://doi.org/10.1103/PhysRevD.60.045003.

M. Hopfer, C. S. Fischer and R. Alkofer, Running coupling in the conformal window of large-Nf QCD, JHEP 11 (2014) 035, https://doi.org/10.1007/JHEP11(2014)035.

A. Doff and A. A. Natale, Anomalous mass dimension in multiflavor QCD, Phys. Rev. D 94 (2016) 076005, https://doi.org/10.1103/PhysRevD.94.076005.

D. Binosi, C. D. Roberts and J. Rodriguez-Quintero, Scalesetting, flavor dependence, and chiral symmetry restoration, Phys. Rev. D 95 (2017) 114009, https://doi.org/10.1103/PhysRevD.95.114009.

Downloads

Published

2022-08-01

How to Cite

1.
Bedolla MA, Bashir A, Ahmad A, Cobos Martínez JJ. Studying the quark gap equation at finite temperature, magnetic field and different numbers of flavor and color numbers. Supl. Rev. Mex. Fis. [Internet]. 2022 Aug. 1 [cited 2022 Dec. 7];3(3):0308128 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6290