Hypernuclei based on chiral interactions


  • Andreas Nogga Forschungszentrum Jülich




Hyperon-nucleon interaction, effective field theory, hypernuclei, charge-symmetry breaking


We present Λ separation energies for light hypernuclei based on chiral hyperon-nucleon interactions up to next-to-leading order. In the first part, we consider several sources of uncertainties with a focus on using different realizations of chiral hyperon-nucleon interactions to estimate three-baryon forces that enter at next-to-next-to leading order. We also demonstrate that the similarity renormalization group evolution of the hyperon-nucleon interactions induces a strong variation of the separation energies. The energies are however strongly correlated which allows one to define a preferred similarity renormalization group parameter for which hypernuclear binding energies can be predicted reliably. With these insights, we present in the second part three examples of recent applications of chiral interactions to hypernuclei. In the first application, we study the predictions for A = 4 and A = 7 hypernuclei based on the version of the hyperonnucleon interaction that yields a large hypertriton binding energy as suggested by the recent experiment of the STAR collaboration. The first predictions for A = 4 − 6 strangeness S = −2 hypernuclei are discussed in the second application. Finally, in the third application, we use the charge-symmetry breaking of A = 4 Λ separation energies to constrain the Λ-neutron interaction.


A. Gal, E. V. Hungerford, and D. J. Millener, “Strangeness in nuclear physics”, Rev. Mod. Phys. 88 no. 3, (2016) 035004, arXiv:1605.00557 [nucl-th].

S. Gandolfi, A. Gezerlis, and J. Carlson, “Neutron Matter from Low to High Density”, Ann. Rev. Nucl. Part. Sci. 65 (2015) 303– 328, arXiv:1501.05675 [nucl-th].

L. Tolos and L. Fabbietti, “Strangeness in Nuclei and Neutron Stars”, Prog. Part. Nucl. Phys. 112 (2020) 103770, arXiv:2002.09223 [nucl-ex].

D. Chatterjee and I. Vidana, “Do hyperons exist in the interior of neutron stars?”, Eur. Phys. J. A 52 no. 2, (2016) 29, arXiv:1510.06306 [nucl-th].

S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, “Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry”, Phys. Rev. C 85 no. 6, (2012) 065802, arXiv:1112.0234 [astro-ph.HE]. [Erratum: Phys.Rev.C 90, 019904 (2014)].

P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, “Shapiro Delay Measurement of A Two Solar Mass Neutron Star”, Nature 467 (2010) 1081–1083, arXiv:1010.5788 [astro-ph.HE].

J. Antoniadis et al., “A Massive Pulsar in a Compact Relativistic Binary”, Science 340 (2013) 6131, arXiv:1304.6875 [astro-ph.HE].

NANOGrav Collaboration, H. T. Cromartie et al., “Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar”, Nature Astron. 4 no. 1, (2019) 72–76, arXiv:1904.06759 [astro-ph.HE].

D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, “Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations”, Phys. Rev. Lett. 114 no. 9, (2015) 092301, arXiv:1407.4448 [nucl-th].

J-PARC E40 Collaboration, K. Miwa et al., “Precise measurement of differential cross sections of the Σ −p → Λn reaction in momentum range 470-650 MeV/c”, arXiv:2111.14277 [nucl-ex].

J-PARC E40 Collaboration, K. Miwa et al., “Measurement of the differential cross sections of the Σ−p elastic scattering in momentum range 470 to 850 MeV/c”, Phys. Rev. C 104 no. 4, (2021) 045204, arXiv:2104.13608 [nucl-ex].

O. Hashimoto and H. Tamura, “Spectroscopy of Lambda hypernuclei”, Prog. Part. Nucl. Phys. 57 (2006) 564–653.

K. Schonning, “Hyperon and Hypernuclear Physics with ¨ PANDA at FAIR”, Springer Proc. Phys. 238 (2020) 931–935.

Jefferson Lab Hall A Collaboration, F. Garibaldi et al., “Highresolution hypernuclear spectroscopy at Jefferson Lab, Hall A”, Phys. Rev. C 99 no. 5, (2019) 054309, arXiv:1807.09720 [nucl-ex].

H. Ohnishi, F. Sakuma, and T. Takahashi, “Hadron Physics at J-PARC”, Prog. Part. Nucl. Phys. 113 (2020) 103773, arXiv:1912.02380 [nucl-ex].

C. Rappold and T. R. Saito, “Hypernuclear Spectroscopy with Heavy-Ion Beams: Present Status and Perspectives”, Springer Proc. Phys. 238 (2020) 913–921.

T. C. Jude et al., “Strangeness Photoproduction at the BGOOD Experiment”, Phys. Part. Nucl. 50 no. 5, (2019) 493–500. [Erratum: Phys.Part.Nucl. 51, 122 (2020)].

M. M. Nagels, T. A. Rijken, and J. J. de Swart, “Baryon Baryon Scattering in a One Boson Exchange Potential Approach. 2. Hyperon-Nucleon Scattering”, Phys. Rev. D 15 (1977) 2547.

B. Holzenkamp, K. Holinde, and J. Speth, “A Meson Exchange Model for the Hyperon Nucleon Interaction”, Nucl. Phys. A 500 (1989) 485–528.

V. G. J. Stoks and T. A. Rijken, “Soft core baryon baryon potentials for the complete baryon octet”, Phys. Rev. C 59 (1999) 3009–3020, arXiv:nucl-th/9901028.

J. Haidenbauer and U.-G. Meißner, “The Julich hyperonnucleon model revisited”, Phys. Rev. C 72 (2005) 044005, arXiv:nucl-th/0506019.

M. M. Nagels, T. A. Rijken, and Y. Yamamoto, “Extendedsoft-core baryon-baryon model ESC16. II. Hyperon-nucleon interactions”, Phys. Rev. C 99 no. 4, (2019) 044003, arXiv:1501.06636 [nucl-th].

T. A. Rijken, M. M. Nagels, and Y. Yamamoto, “Extendedsoft-core baryon-baryon model ESC16”, AIP Conf. Proc. 2130 no. 1, (2019) 020003.

E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, “Modern Theory of Nuclear Forces”, Rev. Mod. Phys. 81 (2009) 1773– 1825, arXiv:0811.1338 [nucl-th].

R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces”, Phys. Rept. 503 (2011) 1–75, arXiv:1105.2919 [nucl-th].

E. Epelbaum and U.-G. Meißner, “Chiral dynamics of few- and many-nucleon systems”, Ann. Rev. Nucl. Part. Sci. 62 (2012) 159–185, arXiv:1201.2136 [nucl-th].

D. R. Entem, R. Machleidt, and Y. Nosyk, “High-quality twonucleon potentials up to fifth order of the chiral expansion”, Phys. Rev. C 96 no. 2, (2017) 024004, arXiv:1703.05454 [nucl-th].

P. Reinert, H. Krebs, and E. Epelbaum, “Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order”, Eur. Phys. J. A 54 no. 5, (2018) 86, arXiv:1711.08821 [nucl-th].

H. Polinder, J. Haidenbauer, and U.-G. Meißner, “Hyperon-nucleon interactions: A Chiral effective field theory approach”, Nucl. Phys. A 779 (2006) 244–266, arXiv:nucl-th/0605050.

H. Polinder, J. Haidenbauer, and U.-G. Meißner, “Strangeness S = -2 baryon-baryon interactions using chiral effective field theory”, Phys. Lett. B 653 (2007) 29–37, arXiv:0705.3753 [nucl-th].

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, and W. Weise, “Hyperon-nucleon interaction at nextto-leading order in chiral effective field theory”, Nucl. Phys. A 915 (2013) 24–58, arXiv:1304.5339 [nucl-th].

J. Haidenbauer, U.-G. Meißner, and S. Petschauer, “Strangeness S = −2 baryon–baryon interaction at nextto-leading order in chiral effective field theory”, Nucl. Phys. A 954 (2016) 273–293, arXiv:1511.05859 [nucl-th].

J. Haidenbauer, U.-G. Meißner, and A. Nogga, “Hyperon–nucleon interaction within chiral effective field theory revisited”, Eur. Phys. J. A 56 no. 3, (2020) 91, arXiv:1906.11681 [nucl-th].

S. Liebig, U.-G. Meißner, and A. Nogga, “Jacobi no-core shell model for p-shell nuclei”, Eur. Phys. J. A 52 no. 4, (2016) 103, arXiv:1510.06070 [nucl-th].

H. Le, J. Haidenbauer, U.-G. Meißner, and A. Nogga, “Jacobi no-core shell model for p-shell hypernuclei”, Eur. Phys. J. A 56 no. 12, (2020) 301, arXiv:2008.11565 [nucl-th].

H. Le, J. Haidenbauer, U.-G. Meißner, and A. Nogga, “S-shell ΛΛ hypernuclei based on chiral interactions”, Eur. Phys. J. A 57 (2021) 217, arXiv:2103.08395 [nucl-th].

S. Petschauer, N. Kaiser, J. Haidenbauer, U.-G. Meißner, and W. Weise, “Leading three-baryon forces from SU(3) chiral effective field theory”, Phys. Rev. C 93 no. 1, (2016) 014001, arXiv:1511.02095 [nucl-th].

V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meißner, “Subleading contributions to the chiral three-nucleon force. I. Long-range terms”, Phys. Rev. C 77 (2008) 064004, arXiv:0712.1967 [nucl-th].

U. van Kolck, “Few nucleon forces from chiral Lagrangians”, Phys. Rev. C 49 (1994) 2932–2941.

E. Epelbaum, A. Nogga, W. Gloeckle, H. Kamada, U.-G. Meißner, and H. Witala, “Few nucleon systems with two nucleon forces from chiral effective field theory”, Eur. Phys. J. A 15 (2002) 543–563, arXiv:nucl-th/0201064.

M. Juric et al., “A new determination of the binding-energy values of the light hypernuclei (15>=a)”, Nucl. Phys. B 52 (1973) 1–30.

D. H. Davis, “50 years of hypernuclear physics. I. The early experiments”, Nucl. Phys. A 754 (2005) 3–13.

S. K. Bogner, R. J. Furnstahl, and R. J. Perry, “Similarity Renormalization Group for NucleonNucleon Interactions”, Phys. Rev. C 75 (2007) 061001, arXiv:nucl-th/0611045.

R. Wirth and R. Roth, “Similarity renormalization group evolution of hypernuclear Hamiltonians”, Phys. Rev. C 100 no. 4, (2019) 044313, arXiv:1902.03324 [nucl-th].

A. Nogga, S. K. Bogner, and A. Schwenk, “Low-momentum interaction in few-nucleon systems”, Phys. Rev. C 70 (2004) 061002, arXiv:nucl-th/0405016.

R. Wirth, D. Gazda, P. Navratil, and R. Roth, “Hypernuclear No-Core Shell Model”, Phys. Rev. C 97 no. 6, (2018) 064315, arXiv:1712.05694 [nucl-th].

R. Wirth and R. Roth, “Light Neutron-Rich Hypernuclei from the Importance-Truncated No-Core Shell Model”, Phys. Lett. B 779 (2018) 336–341, arXiv:1710.04880 [nucl-th].

D. R. Entem and R. Machleidt, “Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory”, Phys. Rev. C 68 (2003) 041001, arXiv:nucl-th/0304018.

J-PARC E13 Collaboration, T. O. Yamamoto et al., “Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of 4 ΛHe”, Phys. Rev. Lett. 115 no. 22, (2015) 222501, arXiv:1508.00376 [nucl-ex].

E. Botta, T. Bressani, and A. Feliciello, “On the binding energy and the charge symmetry breaking in A ≤ 16 Λ-hypernuclei”, Nucl. Phys. A 960 (2017) 165–179, arXiv:1608.07448 [nucl-ex].

STAR Collaboration, J. Adam et al., “Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton”, Nature Phys. 16 no. 4, (2020) 409–412, arXiv:1904.10520 [hep-ex].

H. Le, J. Haidenbauer, U.-G. Meißner, and A. Nogga, “Implications of an increased Λ-separation energy of the hypertriton”, Phys. Lett. B 801 (2020) 135189, arXiv:1909.02882 [nucl-th].

J. Haidenbauer and U.-G. Meißner, “In-medium properties of a ΞN interaction derived from chiral effective field theory”, Eur. Phys. J. A 55 no. 2, (2019) 23, arXiv:1810.04883 [nucl-th].

H. Takahashi et al., “Observation of a (Lambda Lambda)He-6 double hypernucleus”, Phys. Rev. Lett. 87 (2001) 212502.

KEK-E176, J-PARC-E07 Collaboration, K. Nakazawa, “Double-Lambda hypernuclei via the Xi- hyperon capture at rest reaction in a hybrid emulsion”, Nucl. Phys. A 835 (2010) 207–214.

L. Contessi, M. Schäfer, N. Barnea, A. Gal, and J. Mareš, “The onset of ΛΛ hypernuclear binding”, Phys. Lett. B 797 (2019) 134893, arXiv:1905.06775 [nucl-th].

I. N. Filikhin, A. Gal, and V. M. Suslov, “Faddeev calculations for the A = 5,6 Lambda Lambda hypernuclei”, Phys. Rev. C 68 (2003) 024002, arXiv:nucl-th/0303028.

I. N. Filikhin and A. Gal, “Faddeev-Yakubovsky search for (Lambda-Lambda) H-4”, Phys. Rev. Lett. 89 (2002) 172502, arXiv:nucl-th/0209003.

I. N. Filikhin and A. Gal, “Faddeev-Yakubovsky calculations for light lambda lambda hypernuclei”, Nucl. Phys. A 707 (2002) 491–509, arXiv:nucl-th/0203036.

R. H. Dalitz and F. Von Hippel, “Electromagnetic Λ − Σ 0 mixing and charge symmetry for the Λ-hyperon”, Phys. Lett. 10 (1964) 153–157.

A. Nogga, H. Kamada, and W. Gloeckle, “The Hypernuclei (Lambda) He-4 and (Lambda) He-4: Challenges for modern hyperon nucleon forces”, Phys. Rev. Lett. 88 (2002) 172501, arXiv:nucl-th/0112060.

A. Gal, “Charge symmetry breaking in Λ hypernuclei revisited”, Phys. Lett. B 744 (2015) 352–357, arXiv:1503.01687 [nucl-th].

D. Gazda and A. Gal, “Ab initio Calculations of Charge Symmetry Breaking in the A = 4 Hypernuclei”, Phys. Rev. Lett. 116 no. 12, (2016) 122501, arXiv:1512.01049 [nucl-th].

D. Gazda and A. Gal, “Charge symmetry breaking in the A = 4 hypernuclei”, Nucl. Phys. A 954 (2016) 161–175, arXiv:1604.03434 [nucl-th].

J. Haidenbauer, U.-G. Meißner, and A. Nogga, “Constraints on the Λ-Neutron Interaction from Charge Symmetry Breaking in the 4 ΛHe - 4 ΛH Hypernuclei”, Few Body Syst. 62 no. 4, (2021) 105, arXiv:2107.01134 [nucl-th].




How to Cite

Nogga A. Hypernuclei based on chiral interactions. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 9 [cited 2022 Dec. 9];3(3):0308129 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6305